Compute (Bridgend) Ltd

SELCOPY C++ (SLC) Language Reference
Release 3.50

8 Merthyr Mawr Road, Bridgend, Wales UK CF31 3NH

Tel: +44 (1656) 65 2222
Fax: +44 (1656) 65 2227

CBL Web Site - www.cbl.com

This document may be downloaded from www.cbl.com/documentation.php

CBL Ref: z:\cd\sman\I350\SELCOPY_C++_3.50_Language_Reference.pdf

SELCOPY C++ (SLC) Language Reference and User Guide

Contents
[LYo 0T 0 1= 0 1 =T 0 o TN 1[0 (== 1
o T L1 o o 2
Yoo TU 8 {1 = o o OSSPSR 2
SELCOPY OVEIVIEBW.uteieeiiiiieeiiee e iteee e ettt e e tte e e eteeeeasteeeeaseeesssseeaanseeeasseeeasseeeaaseeeaasseeeasseeeansseeansseaesnseeeansseeensseaesnseeennsseennnneas 2
SELCOPY BaACKGIOUNG.eeiiutieitiiette ittt ettt ettt e et e et e ke e e et e bt et e e b et et e e e ae e et e e e e e e ne e sabeenneenans 2
SELCOPY DEVEIOPMENTttt ettt h bbb et e bttt e bt et et e se e ee e sae e e e seeenenaeas 2
THE SELCOPY LANGUAGE e eteeaueiitit ettt ettt ae ekt s e e he e b e eae e e bt e ea bt e bt e e e bt e eheeea bt e sabeeneenabeenbneeaneee 3
RUN-TIME ENVIFONMENT......eoiie ettt e e e ettt e e e e aeteeeee e s nseeeeeaeeansseeeaeeaannseeeeeesansseeeaeeeannnseeaeeannn 3
] = M OO Y o] o] [[o7=ViTe] o - T O OO OP RSP P R UP PP 3
Y= T (=T =T Lo SRR 3
1N oY E= Lo T O 0] 0177 =T (o} o1 SRS 4
100010 =T VA O 4 F= g Vo =Y PSPPSR 5
Release 3.20 ENNANCEMENTSottt h et s et et e e sh et et e ean et e e eneenne s 5
Release 3.30 ENNANCEMENTSiiiiieiiii ettt e bttt e ae et e aa b et e east e e e ess e e e e be e e enbe e e sanneeabeeennee 6
Release 3.40 ENNANCEMENTSottt b et a e et a et et e s et e bt e sh et e abeeean e et e e eneennee s 6
Release 3.50 ENNANCEMENTSuii ittt h ettt e st e e st e e aa bt e e st e e e sas e e e e abe e e est e e e sanneeabeeennee 6
(O3 T o =Y g T oY = T T [T LY 7
(O] =T =T =Y G T PR 7
AIPNADETIC CRAIACLEIS. ... ettt ettt et e e et e e bt e e e e bt et b e e e e bt e b e ea e e bt eaeeeb e e e e seene s 7
[N LU g T= T o= L O g T U= Tox (=] £ S SUSSPS 8
[DL=Td] o gL] PSPPSR 8
HEXAAECIMAI DIGITS... ..ottt ettt b et h et e he e et enhe e et e e eae et e e ean e e be e et e e ne s 8
SPECIAI CRAIACTEIS.....ctieetee ettt ettt h et h et h e bt e ee e bt et e bt et e et e sa e e e se e e e e neeeaeneeas 8
COMPOSITE SYMDOISttt et a et ee e e bt e e e bt e bt et e e et e e bt e e ae e et e e e et e ne e s nreenneenans 9
(O T YIS 1T 1 Y71 OO 9
Y= UC=] A= LA =1 [T 0 1T o SRS 9
(=110 a1 T £SO 9
0 oY 011 £ PSSR 10
SELCOPY KEYWOITS ...ttt ittt ettt ettt et e bt e bt e sa bt e saeeeabeesh et eab e e ehe e e bt e eabe e beeameeenbeeenbeeaneeanbeeaneeennee e 10
Programmer DefiNed NAMES..........iiiiiii ittt et b ettt e bt 10
(@70 AT £ U =R SRRSO 12
(O] 01T = o £ T O UPOUUPPTPUPTRROT 12
(07070011 41=T 01 (=3RS 12
Comment Text in the SUMMATY BIOCK...........eoiiiiiiieeic ettt 13
Comment Text IgNoring StatemMeENt SEPAIALTON.........oiuiiiii ettt ettt e st e sneeenee e 13
Y= U= 101 £ S SEPRR 13
(0o a1 (o IS) t= 1 (=T g g 1=Ta B 1RSSR PR 14
ENd Of Program StatemENTS.couii i 14
S T LT L =T o o 1 o PO PRPPPRR 15
SEALEMENT CONTINUALION. ...ttt h et e et et e e et e bt e et e e b et et e e nbeenabeenanenanee e 15
SHAIEMENT SEPAIATION. ...ttt e bttt h et ea e e et e it e see et she e e s et et eaaenreea 15
(O3 =T o =Y g S o T T 0 T 0 (=T o o
INVOKING the EXECULADIE. ...ttt b et b e et e bt e et e et e et e s bt eab e e nae e e neenane s
EXPIOItING SELCOPY ...ttt bttt a et e et s et et e et et e bt e bt e bt et e e et e e b e et et e et e eneeeee s
LOCAtNG SELCOPY ...ttt ettt h et h ettt e a e e bt oo et et e e et et e e ea et e be e e st e b et e bt e bt et eares
SELCOPY COMMEANG. .. .eiiitiiiiitiieiiiee e ciee e ettt e et ee e sttt eeaateeesesseeesateeaaasseeaasseeeansaeeaassaeeansaeeansseeeanseeeansseeeasseeeanseeeanseeeannnas
SAMPIE EXECULION ...ttt et bt et e bt et e e et e bt e e et e be e et e e eaeennbeenanenanee e
2@ S T [SO SOPRTR
Z/OS TSO/E ... ettt et a Rt E bRt h e R et e b e et ehe e ean e nte e n e nne s
] = 0@ OSSPSR
UNIXZLINUX SREIL ...ttt e et ea e bt et e bt et e e ae et eeeaneennes
MICrOSOft WINAOWS SEIL.......ocieiiieiii ettt e e e e et e e et e e e ease e e snbeeeeasseeeeaseeesnseeeanseeennneas
Program ENVIFONMENT. ..ottt bttt h et e et e bt et et e e bt e bt ee bt e b et e st e b e e st e bt et e
CBLINAME...... ettt ettt e e ae ekt e e e et e bt e 4R bt e bt e eR bt o8t e ea b e e h et eas e e eh et oAb e e eR et e Rt e en bt e bt e en b e e eneeenbeeeneeeneena
CBLNAME SLC OPHONS ...ttt et skttt b et et eeae e et et e bt e b e e s bt e aeenab e e naneenee e
SELCNAM (SELCOPY.INAMY). ...ttt ettt ettt ettt be e st e sa bt e ss e e easeesb et easeeah st e beeeaee e ke e easeebeeembeeabeesnbeesneeannee e
SELCNAM SLC Options...
SELCMSG (SELCOPY.MSG).
PrOGIaAM PrOCESSING. .. . i iutiitei itttk b ettt e h e b e et o bt e o h et e bt e e bt et e e ee bt e ket eab e e ket e e e e ne et e
EStabliSh ENVIFONMENT......coii ettt ettt e e e ettt e e e e e te et e e e e e anaeeeeaeeeansseeeeee s nsseeeeeeaassnseaaeeannnseeaeaeann
CONrol STAEMENT ANGIYSIS.ttt ettt bttt b et e bt eeae e e bt e et e e be e et e e sbe e st e e ninenanee e
Lo =Tor (1o o (o [T a1 =Y TSSO OPRROY
RV 2= L= Lo L= TS U] o = 11 U1 o OSSR
FIIE OPBN... ettt h bt a bt a bt h et h e et et et et ettt ie e be et e nenreea
LT L] o1V AT OSSP PSSP OPOPRN
CONErOl STAIEMENT EITOISeiiiieiee ettt e et e e e et e e et e e et e e e asseeesnsaeeeasseeeanseeesnnseeeasseeeanseeesnsaeeeanseenanns
SElECHON TIME PrOCESSING.tt ittt h ettt e bt e st e bt e bt e e ae e e bt e eae e e be e st e e naeenabeen e e nnee e
IMIPIEA LOOP. .. et et h e e h et b e e e e e e b e e st e e b e s b e e e ae e s b e e s he e s an e sae e e e
T Yo 1T I T 0 L= =T o S SPR
=g o [o) Y o] o) g (o ToT=TST] [To OO PSR OU PP OPPPPPIN
SELCOPY LiST OUIPUL. ..ttt ettt ea e bt et e bt et £ e ehe e et e e eae e ekt e eae e e be e e e e e nbeennbeenanennnee e
SLCLST ENVIrONMENT VANADIE.........eiiiieiiieeiiie ettt e ettt e et e e et e e e ast e e e e seeesseeeeasbeeeansseeeasneeeanseeeanseeeennnas 29
(=TT 1= g I T OSSPSR 30
(0o a1 (o IS] =1 (=T 44 1=Ta (SRR SRR PRR 30

2021/11/01 16:52:05

SELCOPY C++ (SLC) Language Reference and User Guide

Contents
Chapter 2. Program Execution

LT Y =3 o o] TR 31
PRINT BIOCK - TYPEZD OULPUL ...ttt ettt ettt ettt e bt e seb e e s be e et e e ebe e enseesaeeebeeeneeennes 32
SUMMArY (TOTAIS) BIOCK.cceiiieeet ettt bttt h ettt e et e bt e st e be e et e eebeesab e e nanennee e 33
Summary Block Selection StatiSticsS COIUMNS.........iiiiii et ene e 33
Summary Block 1/0 Operation COIUMNScoiiiiiii ettt sineenee e 34
L Taa g Lo Y ST T= Lo o O TSP OP PRSPPI 36
[0 T0] (=] gl I =R 36
Chapter 3. Data Elements and Refer@NCeS......uuuiirmiimirsmisiissrsss s s s s s s s s s a s s e a e s e e m e R e e nm e R R e s nnnaan 37
YU o 13 (U T oY Y Z= T (=1 o] (Y= 37
VLo AT e LT AN Z=Ta = o] 1= 37
= = L (=T GV T =1 o] [T TN 37
EQUALEA SYMDOIS ...ttt ettt et e et et ea e e be e et e ettt ne et eares 38
WOTK Area oF INPUE BUFTET. ... st ae e s e e s 38
LAY T A == 38
INPUL BUTTEI ...ttt b et b e et e b e st e e b e s b e e s be e s e e sae e s aae e sbeeeneesaee s 39
(0] 13 7= T3 - 39
(O g P21 =103 (=T 00 g 11 7= 0 = 39
(8L aTo[0To) (=To [N1 (=TT PO O PRSP P UPR PR 39
(@ 06] (Yo MO a P=T =T (=T O o) 1 =] £= L £= PR 40
[[y O g P U= Tel (=T ol O 0T g 1S3 =T a1 £ 40
ASCII/EBCDIC Character CONSIANTSceiiiiiiiiie ettt e ettt e et e e e e e et e e e e e e e abaeeeeeeebareeeeeeaaseeeeeeeannres 40
N[0 g [T STl @ g F= U= T (=T @ T a3 =T | £ 41
(D (= O g F= Y= T (=T GO0) 1] ¢= L €= 41
N[0 g [T ST @ T 0 T=3 7= £ 42
DECIMal INTEGET CONSTANTS. ...ttt ettt b e e bt e h e eab e e e be e et e e abeeenbeesaeeebeeaneeennes 42
Zoned Decimal INteger CONSTANES......cc.uiiiiiiiiiie ittt ettt et et nbe e neennee s 42
HeX BINary INteger CONSTANTSo.uiiiiiiiie ittt ettt eb e eab e e s b e e et e e be e enteesaeeebeeaneeennes 43
Decimal FIXed POiNt CONSANTS.uuviiiiiiieieie e e e et e e e e e e eaeeeeeeeeeeeaesessssssssassssssssssnseneeeeeaeaeeaeaeeas 43
Zoned Decimal FiXed POiNt CONSTaANTS.uuuieiiiiieiiieeieeee e e e e e et e et e e e e e e et e eeeaeaeeeeeeeeseseeasaesasssssseresnnnenes 43
RV T E= o] LTRSS 44
B LEYe E=T Yo BV Z= T F= 1 o] 1= N 44
(o= To =R aT=T o o =T o J O OSSP PR PR PPPRPRRN 44
a1 E= V4= 1 LU= R 44
&VArNaAME SOUICE FIBld POSIHION.uueeeiiiteieeeeee et e ettt e e e eeeaeaeeaeaeeeeaeeeseeseasssssssssssssnsnnnnnes 45
TaY ST aE= IRV A= T =1 o] [T 45
(Y=L F= 0] [46
[RL=1 (o D LY {1 a1 o F= N 46
[al e g g P= N =11 D= 1T a1 o 50
... 50
CBLINAME. ...ttt e oot e e e e et t et e e e e e abaeeeeeeeasteseeeeeassseeaeeeaasseeeeeeaabeeeeeeaaanteeeeeeannrnneeas 50
[N = 51
01 51
[0 52
L A 52
LIS] 74 52
[| =2 I 52
L A 53
[72 53
SO ALE ..o e et ——e e e eet——teeeeeat——eeeeeaaa—eeaeeeait—eeaeeaaaba—eeaeaaaarreaeeeaaraeeens 53
UXADIFF .. ettt et e e e e ettt e e e e e et eeeeeeeabeeeeeeeasaseeeeeeaaasaeeeeeaanbeeeeeeaabraneeeeeaanneeeeeaanranaaaaaas 53
L0 N I I = AR 53
L) XA 54
L0)\ L\ RO 54
L 54
LI 1 = 54
UXLRECL ...ttt ettt e e e ettt e e e e et e e e e e e eaabeeeeeeeassaeeeeeeeasssseeeeeaaasbeeeeeesaasseaeeeeeananseeeeeeannrnnaaeaan 54
L0) RO 55
UXPGINO. ...ttt ettt e e e ettt e e e e e ae e e eeeeeeasbeeeeeeeassaeseeeeaaassseeaeeaansbeneeeesansseneeeeaansnaeeeeeeannrnnaeeaas 55
UXPW et ettt e e oottt e e e e e taeeee e e e e aaeeeeeeeeateeeeeeaataeeeeeeeaatteeaeeaaatereeeeaatraaeeeeaabaaeeeeeaaaraneeaaans 55
UXREASCND.....cci ettt ettt ettt e ettt e e e e e b e e e e e e eaabe e e e e e eaabaeeeeeeeaaasseeeeeaansbeneeeeaatreaeeeeeaanaeeeeeaanrnnaeaaaas 55
L0) 1 = o I RO 55
UXRETCD. ...ttt ettt ettt e e e e ettt e e e e et e e e e e e e aabeeeeeeeaasaeeeeeeeasssseeaeeaassseseeeesansseseeeeeasssseeeeeannnrnnaaeens 55
L0 R T = 1) 4 TSP 55
VOLID. ..ttt ettt e e ettt e e e et e —eeeeeeea——eeeeeeeabeteeeeaaat——eaeeaaanteeeeeaaiabaneeeeaaatareeeeeaanarreeaeeaannre 56
(DT e= R Y o 1= ST OO O OO U OO PRSP RTOROORTON 56
(O] L= Lol (=Tl D U= R Y o 1= S PO PSP O PP PPROPRTRIOt 56
(0 1= To) (=T gl D C=To [=T To o OO URUPR PRSP 56
Character Variable LENGEN..........ooii ittt ettt bt e e e e ab e e saneene e 56
Character Varying LENGTN.......coui oottt et b ettt e eae e e bt e et e e be e s beesaeeenbeesneeannee e 57
Character Variable NUIl TErMUNALEA.uuueeeeeieeeeeeeeeee ettt e e e e e e e e e eeeeeeeeeeeeeeesessssassssssssnsnnnnnes 57
DAt DAtA TYPES ...ttt h et h e b h b a b e sh e h e e e e b e e e e e e r e 57
(O =T = 1o3 (ST gl D= =R 58
=TT E= LV D (= OO PP OV PR PPRPO 59
UNSIGNEd DECIMAI DALE.....c..eeieeeeiie ittt b ettt et be e et e ne et e e sae e 59
SIGNEA DECIMAI DAL.....ceetteiie ettt ettt ettt et e b et et e e e b et e bt e eab e et e e eabeebeeenbeeeneeenbeeaneeennee e 60

2021/11/01 16:52:05 ii

SELCOPY C++ (SLC) Language Reference and User Guide

Contents
Chapter 3. Data Elements and References

N0 LT ol D = R Y o 1= P PSSO U PP TR PP 60
=TT E= 1 VAN 1] (=T o = SO OO P PO TRR PR 60
DIECIMA INTEGEE. ...tttk e bt e et e bt e eab e e bt e et e bt e s e e ene e e beeenneennes 61
Z0NEA DECIMAI INTEGET. ...ttt et o e e bt e e e et e et e e e s bt e e et e e nne e e e nnneeeas 62
DECIMAl FIXEA POINT.....co ittt b et e s bt et e bt et e e be et e e s ennes 62
Zoned DeCimal FIXEA POINT.......oo ettt e et es e e s e e e et e e s e e nnnee s 62
HEX FIOAEING POINT. ...ttt a e et e h et et e bt et e ne et eesaneennes 63
BiNary FIOAtING POINT......ei ittt e ettt a e e s bt e e bt et e e e e e st e e e nne e e s 64
N0 T Tl O = = Ty (T O D = = O PP U PPV OPR PR 64
Numeric Character With FORMAT ...ttt ettt b e et e s he e et e e beeenbeeeaeeabeeaneeennes 65
Numeric Character Without FORMAT ...ttt 65
L O] Y AN IS (T g o T TP 65
NUMENC FORMAT SYMDOIS......c..tiiieiitie ittt a et ee e e be e e st e bt et e e be et e e eaeeenres 66
Digit CONIOL SYMDOL. ...ttt ettt a et e e h ettt e s et e e bt e se bt e bt e eab e e e be e easeesbeeenseesaeeenbeeaneeennes 66
Decimal Point CONrol SYMIDOL.........oiuiiiiiii ettt 66
Zero Suppression CONrol SYMDOL.........couiiiiii et 67
Floating Sign Control SYMDOIS.couuiiiiii ettt b et et 68
(00T a=) o=V OO URUPR PRSP 68
Printable HeX FORMAT SYMDOIS.cc.uiiiiiiiii ittt sttt an e bt e e bt et e eennes 69
HeX Digit CONTrOl SYMDOL.ttt ettt b e et e e he e et e e be e et e e sae e e beeaneeennes 69
(070 011 £= V] T OSSP UR PR UPPRURRN 69
DATE FORMAT SYMIOIS. ...ttt ettt b et h ettt e e st et e e s et et e e s e bt e bt e eab e e be e eab e e e beeenbeeeneeebeeeneeentes 70
Date CONIOl SEOUENCES.......eeieieietieit ettt a ettt et e e bt se bt e ea e eab e e be e et e e be e et e e ebe e e b e e eaneennes 70
(00T g =) =T - TSP UPRUPPURRI 71
e o=t (o] o PSSO PPV R PPN 72
ArTNMETIC EXPIESSIONS. ...ttt b et e e e st e e b e st e e s be e s e e e sbe e e aeesaee s 72
REGUIAT EXPIESSIONS ...ttt bttt h et a e et a et e h e et ea et e be e ean e e bt et e e ne et eares 73
Regular EXpressions Pattern STHNG. . ..o oottt sttt sttt be et e e sae e et e e e ennes 73
Y D= T To 1 A=Y o | T T O U PO U TP OPRUPOPIN 78
INPUL/OULPUL DAL OBJECES. ...ttt bbbt et et ettt see et sa e et e sieesbe e e e sbeeenenreen 79
L= P PP U PP OT R OPR PR 79
1L Lo PRSPPSO 79
FHIEIA ClAUSE. ..ttt h et h et ekt e ettt e et et e et e bt e ea bt e bt e et e e bt et e e ne et e 79
FIE INGIMIE. ...ttt ookt e sttt oo bt e e ek et e st e e s bt e e e Rt et e e e et e et e e e nne e s 82
STDIN @NA STDOUT ...ttt ettt et e e ek et ea st o1 b et e s e e eh et e b e e e ae e e bt e eae e e be e aabeesaeenabeenanenanee e 83
(DN o= TR = o= O PSP O PSP OPP PRI 83
] = O @ e I I £ S O TP OPT PP PPUPRRIOt 84
YA 7Y I 1RSSR 84
WINAOWS KEYDOGIT. ...ttt b et e bttt e et et ee bt et e e et e sbe e et e e nbneeneennee s 84
WINAOWS ClIPDOAIT. ...ttt ettt ettt b et h et e e b e bt e st e e b e et e e st e e e e ae e se e e e e seeeeneeanes 85
Data RECOI™ FOMMAL. ... ettt h et a et a e et e e bt e bt ea bt e ke e e st e b e et e e e ne e et e e eennes 85
Fixed Length RECOIT FOMMAL....... .ottt e bt e et eaa et e e b e e e et e nnn e e e nenee s 86
Variable Length RECOIA FOIMAL........c.ui ittt ettt be e e e e neennee s 86
UNdefiN@d RECOIA FOIMAL.ottt ettt e e bt e et et e e et e e ba e e e et e e nnr e e e nnneeeas 88
(O3 F:To] L= O ST S I 010 L 40T o - - 1o L 89
(@] o1 =i o]l @ =t o= Vi o K T TSV PO TSRO PRRUPPPIN 89
Parameter SPECITICALIONiiiiiie ettt et b e b bt e ettt bt e ettt et et e 89
COMMON PAFAMELEIS.......coutiiiitiit ittt ettt a e h e ea oottt e as e oo b et e et e ehe e e bt e eae e e bt e eae e e bt e e s beenbeennbeenaneeanee e 89
NOPCTL, NOPRINT, NOPSUNM.......eiititiiteiie ittt ettt ettt ettt e st et e et e bt e sa bt e beesab e e abeeaabeeabeeenbeeaneeenbeeaneeentes 89
ST L2 Nl S PO PP O PP PPPOPRRIOt 90
LI =2 PSPPSR 90
N T T T PP TP OPRUPPPIN 91
(0 Y O PROURUPRPRTRI 93
(07 = I O OO P P OPRUPPPRUPIN 96
(07 1 [=PSRRI 97
(0] [T T PP USOPRT 101
L0 0 1] =PSRRI 103
COMPRESS ...ttt ekttt h e e et e 4 h et e bt e oh e e ettt ehe e £ ke e e e e e Rt et e e R et bt e e Rt b e e ee e e ne e nen e s 106
(O] USSR 111
(O I OO TP U SRR 114
(O PP USRI 116
CVxB/CVBx - Convert to and from BiNary INTEGET..........oiuiiiiiiiieiie ettt 118
CVXC/CVCx - Convert t0 and from CRar@Cer...........oiuiiiiiiiie ettt ettt e e e beesnteeeneeennees 118
CVxF/CVFx - Convert to and from FIoating POINt..........ooiiiiiiiiiii s 118
CVCH/CVHC - Convert to and from Printable HEXcouiiiiiiiiiie e 119
CVxP/CVPx - Convert to and from Packed Decimal INtEGEN........ccui ittt s 120
CVxZ/CVZx - Convert to and from Zoned Decimal INtEEL.uiiuiiiiieie et 121
DECLARE.ottt h £t a e E et h £ e R e R e R e e Rt e AR e e e Rt e R et E e e R et e b e e e et et e e eneenneeaa 122
DIELETE. ...ttt ettt ettt et ekt et e e h e e s e e R et ekt e o2t e e bt e SRR £ oAt e AR e oA et oAb e e ARt e oA be e AR et e bt e eR et e beeenee e beeanteeneean 127
DIVIDE. ..ottt et e h e £ a ek e e R e e R £ e R e AR e e R et et 4R e £ e R e e eE et e R e e e R et e b e e e et et e e nneenreeaa 129
[T TSR SURRRPRRR 131
DIUMIMY, etttk etk £ et eh et £ e e a et £ ke £ £ e £ £ R e e £ e R £ 4R e e 4R e e ke e ea R e AR e £ e e e e R et e b e e e Rt e e b e e ean e e b e e ereenreeaa 134
| PSSR PRR SRRSO 135
EQIU. . h £ a b e e R e R R e e AR e e R et ea R e e AR e e e et e eh et e b e e e Rt e e b e e e et e b e e ereeneeaa 136
EXPAND. ...ttt ettt sttt h ekt h e et eh e R e Rt ek et oAt e e R et AR £ e Re e oAb e oA et eabe e ARt e ea bt e eR et e b e e eR bt e beeenne e beeateenneean 138

2021/11/01 16:52:05 iii

SELCOPY C++ (SLC) Language Reference and User Guide

Contents

Chapter 4. SELCOPY Operations
[TSSO U P OUT TR PPRRPROPI 142
L 1] PSS PR R RTOPRPRPI 144
GEEINE R AT E. ettt h et e h e e et o4 h et e s e e eh et et e e eh e £ £ E e e et e e b et e R e e R et R e he e e b e e e et ne e nene e s 146
(€1 1 1 TSRS 148
[F/AIND/OR ...tttk h et e ekt e bt et e R e Re £ AR e R £t E e eE e R e e eR et e R et e et e R et et e e enn e e beeeneere e 150
Standard CompPare CONGITION.oiuiiiiiieii ettt ettt ettt b e b e et e se et e e e e ebe et e aeesae e e seeeanes 155
Character Range TeST CONGILION.iiitiiiiieiii ittt b ettt b ettt e e e bt e e et e bt e seneesneenene s 156
LR LTI O o 11T o AR O TS OP PSPPSRI 157
ol 01 =g @]oTa o 1 1[o] o FEAU O ST P PO TP OPRPRTOUR PSP 157
0T LT (ol O] s o 11T o RSO OPTRTOPR PSR 158
(IS @ 0] o0 o @] ol [y o o IO TSP P PO TP OPPOVRTOURPROPR 158
INPUL OBJECT CONAILION. ...ttt bttt h et ettt e e e bt et et e sae e sbeeeesbeeneninen 158
INGLUDEttt bttt e e a et b et e e et e bt o e E e ekt e ea bt o1 H et £ab e e eeH e £ b e e e e et e bt eas e et et et e e enn e e beesnneenee e 159
1 ST = USSR P RS UPRPRPI 161
[OSSP TSP PPPRPRTOPRRPROPI 165
[1 T OSSP SURSRORR 166
LOWER ...ttt ettt e ekt ea et ket o et e £ R e e e R £ e R e e AR R e e R et ea Rt e AR e £ e R e e R et e R e e e R et e b e e ean e e ne e nreeneena 170
1YL OO RRSURRRPRR 171
IMIOVE .. ettt h et et b oo a e e b et o et e £ R et e e E e e R et £ R R e £ ket ea e e AR e e e Rt e eR ettt e e Rt e e b e e e et b e e e neeneena 175
YL 1 USSR URR S ROPRPRPI 178
(O] O T SO U RSP P OPRTRTON 180
[0 = USSR 182
(O [T SO U RSP PPN 184
[T LTRSS 196
L2 L O PSSO PSPPI RPRTOPRRPROPI 197
READ. ...ttt ettt h ekt ekt h et R R £t R e e Rt ek et oAt e e b et oA £ £ e Re e oAbt oA et enEe e ARt e eAReeeR et e bt e eRee e beeanee e beeanteenbeean 204
(O] SO =1 o] (= U= o T OO PO U SR OU PPN 220
(=T Te (=T g T Te o] o T PP UPPOUPPP PSP 220
Column DeClared Vari@bIES..........cuui oottt e s 220
SELCOPYI LISt REAG ...t etee ittt ettt ettt b e h e st e e a bt e s b et e a bt e bt e e bt e bt e e ke e eaeeenbeeanbeenbeesmbeeneennneas 221
(D =To A T T R TSP POV ST OPPSPRTOURRPROPI 223
DireCtory RECOII REAT.cooiiiiiiii ettt et e ettt e e e a et e e e bt e et e eeaa e e e et e e e nte e e nanns 224
z/OS PDS/PDSE Library Dir€Ctory RECOITSiiiiiiiiiiiii ettt ettt 224
Z/N'M CMS File DiIr€CtOry RECOMMS.....c..viiiiiieiieiiti ettt ettt ettt e et b et e et e st e e she e eabeesbeeeseesnbeebeeenneenes 225
Windows and Unix-like File DireCtory RECOITSciuiiiiiiiiieiit et 226
RETURN. .ttt ettt ettt ettt et h et e st e e h e e bt e e a et e ke e ea et e b et 4a e e e Rt e 1o bt e AR e e en bt e Ah e e embeeeh bt e b e e ehee e beeenee e beeenteeneean 228
L OSSO PSS UPPOPRTOPRPROPI 229
O I PP USRR 230
SP A CE ... E e h e h b e R £ E £ e R e e R e e eat e R et E e e R et Rt e e he e e b e e ea et ne e nen e neenane s 231
S 317 Y PSSP USRI 232
ST I T OO T PP USRI 235
SU B .ttt ettt e e ——e e ettt e et —eeea——eeateeeeaateeeaateeateeeeanteeeaneeeesteeeanteeeaneeeeanseeeaseeeeanneeeanneeeaaneeeeanneeeaneeenn 236
1S O TP P SRR USOPRTI 238
S LI =L PP USRI 240
LI T2) T TS OU RSP P OPRRTRON 242
UP D AT E ..ttt ettt h et h ettt e s h et et eeh e e R e e e Rt e e ket oAt e e bt e oA R £ e Rt oAbt oA et eaRe e AR et e A ReeeR et e bt e eh et e beeanee e beeanteenbeean 245
UPPER .ttt h £ a b e e R e E £ R e R e e R et ea bt AR e £ e R e e eR et b e e e Rt e e b e e e et e b e e e reenneena 249
L PSSR URP RPN 250
L LTI = T TS U RSP PPN 252
VST L (=SSP RR RN 265
NS D IS 41 (= T TSROSO OUP PSP OPRRPROPI 265
LR R D IS A1 USROS TUPRRPRRPI 266
[SES]DIS (= TSSOSO PP RTOPPRPROPR 266
(O] =T O = o) (=1 (PRSPPSO 266
WINAOW KEYSITOKE WIITE ...ttt ettt ettt b ettt ee e et e bt e s bt et e e nae e e nbeenan et 268
NG (0] IS) 1=V SRS RTUPRRPRPI 268
KEYSITOKE PAr@MELEIS.... ..ottt a et e ettt s et e bt e eae e et e e et e e beenaneeneean 268
Non-US and Non-UK National KEYDOAITScciuuieiiiiiiiiitie ettt sttt sttt e aneeeneean 269
KEYSITOKE EXAMPIG. ... ettt h et a et he et s ket e bt e eae e et e e e e e et e e eaneeneean 270
KV ettt ettt oottt e e e e e teeeeeeeeaasteeeeeeaanteteeeeaaaheeteeeeeaasteeeeeeaantetteeeeaanseeeeeeeaannteeeeeeaantaeeeeeaaannneeeeeeaanteeeaeeaanne 271
Appendix A. Regular EXPreSSiON SUMMAIY......ccciicesmissmsssissmsssisssssssssssssssssssssassssssssssssssssssssssssssssssssss sosssssssss sssssssssssssessasssssssssnns 274
OPErators AN TEXE SPECITIEIS.t ettt a ettt b ettt a et e et e sae e et e e nbe e e b e e nae e e beenan e res 274
PredefiNed EXPIESSIONS.... ...ttt bt st e e st h e e st e sh e e e e e s b e e e e e e e h e e e b e e e e e b e e seeere e 274
Appendix B. Operation, Parameter and Argument KEYWOIdS.........ccoururismisumnsmissssnisssssssssssssssssss s sssssssssssssssssssssssssssssssnss 275
Operation to Parameter Keyword Cross-RefereNCe...........oiiiiiiiiiiiie e 275
Parameter to Operation Keyword CroSS-ReferENCE..........cciiiiiiiiiiiiit ettt 277
Parameter to Argument Keyword CroSS-REfEIrENCE.cc.ui it 281
Argument to Parameter Keyword CroSS-REfEIENCE.iiiiiiiii ittt 281
KEYWOID ADDIEVIATIONS.cte ittt ettt h et h e et e ke et e sh et et e e s he e et e e ebe e et e e ean e et e e aaneeneeaa 282
£ 10T T 284

2021/11/01 16:52:05 iv

Documentation Notes

Third Edition, November 2020

Information in this document details general features and functionality of the SELCOPY 3.50 C++ program, available on mainframe
platforms as component SLC of SELCOPY Product Suite, and on Windows, iSeries and supported Unix platforms as SELCOPY.

Copyright in the whole and every part of this document and of the SELCOPY C++ system and programs, is owned by Compute
(Bridgend) Ltd (hereinafter referred to as CBL), whose registered office is located at 8 Merthyr Mawr Road, Bridgend, Wales, UK,
CF31 3NH, and who reserve the right to alter, at their convenience, the whole or any part of this document and/or the SELCOPY
C++ system and programs.

SELCOPY for Windows, iSeries and supported Unix operating systems and SELCOPY Product Suite for z/OS, z/VM (CMS) and
z/VSE operating systems are available for download and install from www.cbl.com/selcdl.php .

The following publications for SELCOPY Product Suite and its component products are available in Adobe Acrobat PDF format at
www.cbl.com/documentation.php :

o SELCOPY Product Suite Customisation Guide
e SELCOPY User Manual

e CBLVCAT User Manual

o SELCOPYi Reference and User Guide

e SELCOPYi Text Editor Manual

e SELCOPYi Data Editor (SDE) Manual

o SELCOPYi REPORT Utility

¢ SELCOPYi SMF Utilities

e SELCOPYi Training Manual

o SELCOPYi Quick Reference

No reproduction of the whole or any part of the SELCOPY C++ system and programs, or of this document, is to be made without
prior written authority from Compute (Bridgend) Ltd.

At the time of publication, this document is believed to be correct. Where the program product differs from that stated herein,
Compute (Bridgend) Ltd reserve the right to revise either the program or its documentation at their discretion. CBL do not warrant
that upward compatibility will be maintained for any use made of this program product to perform any operation in a manner not
documented within the user manual.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide

Introduction

This chapter provides an introduction to SELCOPY (C++ version) batch executable and its possible applications.

About this Book

This book is a language reference for programs written in the SELCOPY language and processed by the following Compute
(Bridgend) products:

e SELCOPY Product Suite, SLC for z/OS

e SELCOPY Product Suite, SLC for z/VM CMS
e SELCOPY for Windows (32-bit)

e SELCOPY for Linux (i386)

e SELCOPY for Linux (System z)

e SELCOPY for OS/400

¢ SELCOPY for AIX

e SELCOPY for Solaris (SPARC)

e SELCOPY for HP-UX (PA-Risc)

e SELCOPY for Tru64 (Alpha)

It provides all the relevant information and guidance required to develop a SELCOPY program.

SELCOPY Overview

This section provides a general overview and history of the SELCOPY software product.

SELCOPY Background

The name SELCOPY is derived from data SELect and COPY, a general description of some of the earliest applications to be
written using the software.

SELCOPY was first developed in the BAL (Basic Assembler Language) on IBM mainframe platforms for OS and DOS operating
systems, known today as z/OS, z/VSE and z/VM CMS. The BAL version of SELCOPY was first made generally available in 1971.
Since this time, it has been actively developed and is currently operational in many mainframe installations worldwide.

Development for SELCOPY written in C++ was started in 1994 for portability across IBM mainframe, AS/400 and the various PC
and Unix platforms. lts specification was based on that of SELCOPY written in BAL and so, with only a few exceptions, supports
the same syntax. The first release of SELCOPY written in C++ was made generally available in 1996 for PC-DOS/MS DOS, with
versions for Microsoft Windows, AS/400, Linux and other Unix operating systems following thereafter.

Since its first release, the C++ version of SELCOPY has introduced many new facilities that are not available in the BAL version. In
2011, so that programmers on mainframe systems could take advantage of these new facilities, the C++ version of SELCOPY was
compiled for z/OS and z/VM CMS systems and included as an executable module, SLC, within the SELCOPY Product Suite
package for each system. The executable module, SELCOPY, continues to be included within the SELCOPY Product Suite and
remains the default SELCOPY language interpreter for legacy programs.

SELCOPY Development

SELCOPY development and support on various operating platforms has primarily been, and continues to be, driven by user
requests. Consequently, new releases and build levels have been made generally available only for current operating systems and
only for operating systems on which SELCOPY programs are actively being developed. e.g. SELCOPY for OS/2 is no longer
developed.

If you are interested in developing new or existing SELCOPY programs and the SELCOPY executable for the system on which you
operate is not currently supported or is at a back level, please contact Compute (Bridgend).

Similarly, any comments, new feature requests or software defect reports may be emailed to Compute (Bridgend) at:
support@cbl.com

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 2

Introduction The SELCOPY Language

The SELCOPY Language

SELCOPY is a high level, interpreted language and so a SELCOPY program requires no compilation before execution.

Like Assembler, C and COBOL, SELCOPY is a non-structured, procedural programming language which consists of sequentially
ordered statements and supports labels allowing execution flow to jump to any location within the program.

The language itself is designed to be practical and easy to understand so that inexperienced programmers may deduce the
function of a SELCOPY application without in-depth analysis.

The SELCOPY (or SLC) executable accepts the SELCOPY program as control input, interprets all control statements in order to
translate them into SELCOPY internal structures, then executes the statements in order of sequence.

Run-time Environment

Run-time environment pre-requisites exist for C++ SELCOPY executed in the following operating systems.

IBM z/OS
On mainframe z/OS systems, the SELCOPY C++ (SLC) object modules are compiled using the XL C/C++ compiler which
requires Language Environment. Language Environment is an IBM supplied architecture that is integral to modern z/OS
operating systems and establishes the run-time environment required to run the SLC executable.

SLC can share the run-time environment with other called executables written in languages that conform to the Language
Environment architecture.

Microsoft Windows
Required only for SELCOPY support of Micro Focus VSAM files, a folder containing the following run-time (dynamic link)
libraries must exist in the PATH environment variable definition.

0 CBLRTSS.DLL
0 MFFH.DLL

Input/Output of VSAM (Virtual Storage Access Method) files, a data format native to IBM mainframes, is supported by
SELCOPY on Windows platforms via the suite of products provided by Micro Focus International plc.

SELCOPY Applications

A SELCOPY program may be written to perform any number of tasks but is primarily associated with the manipulation of data read
from, and subsequently written to, any number and combination of files, data streams or database tables.

Some common uses include:

¢ Data modification and verification steps within production z/OS batch jobs.

¢ Interrogation and reformat of data as part of a CLIST or Rexx procedure, Unix script, Windows VBScript or batch file
execution.

¢ Quick, execute once only jobs to trouble shoot and fix data.

Support to seamlessly perform file /O on multiple, potentially different file formats using simple syntax makes writing a SELCOPY
program a flexible, quick and easy alternative to using system utilities (e.g. sed, grep, awk or z/OS IEBCOPY, IEBGENER).

Maintenance

Corrections to software defects and introduction of new functionality are included in C++ SELCOPY as new builds of the current,
generally available release.

Update of SELCOPY to a new build level involves replacement of the SELCOPY executable which, for z/OS systems, is achieved
via an SMP/E SYSMOD to the SELCOPY Product Suite and, for z/VM CMS systems, via a VMARC archive file extraction. For all
other operating systems, the install process must be repeated for the updated SELCOPY product package.

Build levels are incremental. The current build level number of a C++ SELCOPY release follows a period (.) separator which is a
suffix to the release number displayed in the SELCOPY list output footer text. e.g. The following footer records are written by
SELCOPY for Windows Release 3.20 Build level 001.

** SELCOPY/WNT 3.20.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
** Expiry: 17 Jul 2014 *x*

The build level is also included in the SELCOPY version output, displayed when input parameter -V is passed to the SELCOPY
executable.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 3

http://www.microfocus.com

Introduction Maintenance

Notation Conventions

The following list defines notations used in this publication.
¢ Text in syntax diagrams and examples of SELCOPY syntax are presented in @ monospace font.

e SELCOPY keyword identifiers appear in upper case (e.g. READ, WRITE, IF) although may be entered in upper or lower
case, or a mixture of cases.

e SELCOPY keyword identifiers representing operation parameters may have trailing, lower case characters. The upper
cased portion of the keyword identifies the minimum abbreviation for the keyword. (e.g. Vchar indicates that V, VC, VCH,
VCHA and VCHAR are all acceptable alternatives)

¢ Variables appear in lowercase italics (e.g. field_nATp) and represent programmer defined parameters or keyword
parameter values.

¢ Syntax diagram footnote references are represented by a number in parentheses (e.g. (1)).

¢ A single blank may be represented by character b.

Syntax diagrams adhere to the following standards:
Arrow Symbols

Diagrams should be read from left to right, top to bottom and follow the path of the line. Junctions in the line are
represented by a plus (+) symbol.

>>- indicates the beginning of a statement.

indicates the statement syntax continues on the next line.

>- indicates the statement syntax has been continued from the previous line.
->< indicates the end of a statement.

S
|
\2

The horizontal path line, delimited by arrow symbols, denotes the main path of the syntax diagram.

Required ltems

Required items appear on the main path.

>>—— REQUIRED_ITEM ————————————————m— o ><

Optional ltems

Optional items appear below the main path.

>>-— REQUIRED_ITEM -——F—————————————————————— +o———— ><
\ \

+-— optional_item ———--— +

If an optional item appears above the main path, then that item has no effect on the execution of the statement and is
used only for readability.

+-— optional_item ————-— +
I |
>>—— REQUIRED_ITEM ———+—————————————————————— o ><

Multiple Required or Optional ltems

If one or more alternative optional items exist, they appear vertically on separate paths. If selection of one of the items is
optional, the items appear in paths below the main path.

>>—— REQUIRED_ITEM ———+——————————— o ><
I |
+-— optional_choicel ——+
I |
+-— optional_choice2 ——+

If selection of one of the items is mandatory, one of the items appears on the main path and all other items appear on
paths below the main path.

>>-— REQUIRED_ITEM ---+-- required_choicel ——+-—-——-— ><
\ \

+-— required_choice2 —--+

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 4

Introduction Notation Conventions

Repeatable ltems

An arrow occurring above a path line returning to a junction to the left of another junction indicates the item between the
junctions may be repeated.

>>—— REQUIRED_ITEM ---+-- repeatable_item ———+-———- ><

If the arrow occurs above a number of multiple item paths, this indicates that more than one of the items may be specified
and each of the items are repeatable.

Default Items

If one of a number of optional items is default, the path containing that item appears above the main path.

+-— default_choice ————+

>>—— REQUIRED_ITEM ———l —————————————————————— l ————— ><
l,, optional_choice ,,7L
l—— optional_choice ———l

Fragments

Syntax diagrams may be split into fragments so that related syntax items are removed from the diagram and displayed in
a syntax diagram fragment below.

Fragments are named and their location within the parent diagram represented by the fragment name in bold print,
enclosed in vertical bars (or symbols). The same vertical bars are used to indicate the beginning and end of the syntax
diagram fragment below the parent diagram.

>>-— REQUIRED_ITEM --- iteml —-—-————-—— | fragment |--><
fragment:
| =——=+-- item2 -—-+--— KEYWORD ——+-—————————— t—————
l—— item3 ffl l,, item4 ——l
i** itemb 771

Summary of Changes

This section is a summary of new features included in different releases of C++ SELCOPY.

Release 3.20 Enhancements

Release 3.20 includes the following product enhancements:

¢ In the print control block of SELCOPY's output report, display the offset from the start of the field of printed data that
streams onto second and subsequent print lines.

¢ z/0S only: Use RECFM of the input file (data set) as the default for output HFS or ZFS files as opposed to RECFM=U
EOL=LF.

¢ 2/0S only: As for the BAL version of SELCOPY, the length value displayed against an output file in the summary block of
SELCOPY's output report is that of longest record written. Previously, the defined LRECL value was displayed.

e Support new operation CHANGE.

e Support multiple field specifications on WRITE and MOD operations.

e Windows only: Support WRITE of keyboard keystrokes to other opened windows.

e Windows only: Support READ and WRITE of data to and from the Windows clipboard.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 5

Introduction Release 3.30 Enhancements

Release 3.30 Enhancements

Release 3.30 includes the following product enhancements:
¢ Regular expressions supported as search strings on IF/AND/OR and CHANGE operations.
e Support for variable length character data types on the DECLARE operation.

e Support MATCHLEN parameter on IF/AND/OR operations to assign the length of matched text to an @variable or
declared variable following a character or regular expression compare.

e Support CASEI parameter on the CHANGE operation to ignore alpha character case in the search string specification.

e Windows only: Support WIN RESET on the WRITE operation for Windows key stroke output.

Release 3.40 Enhancements

Release 3.40 includes the following product enhancements:

¢ 2/0S and z/VM CMS only: Support debug via the SELCOPY Debug utility of SELCOPYi (a component of the SELCOPY
Product Suite). See the "SELCOPYi Reference and User Guide" for details.

e SELCOPY build date included in the list output footer information.

* Additional SORTDIR codes supported to allow alternative (ascending/descending) input directory sort sequences based
on the date, size, name, extension or path fields returned by a READ DIR/DIRDATA operation.

¢ Declared variables of data type CHARZ are now initialised as null length strings if the INI has not been specified on the
DECLARE operation.

Release 3.50 Enhancements

Release 3.50 includes the following product enhancements:

¢ 64-bit Linux: A 64-bit version of SELCOPY now exists for operation on Linux operating systems compiled for x86-64
(64-bit) architecture.

Use of the 32-bit SELCOPY for x86 Linux on a 64-bit Linux system requires install of 32-bit libraries for legacy software.
These libraries are not required if 64-bit SELCOPY for x86-64 Linux is installed.

¢ SELCOPY for x86-64 Linux only: Internal field definitions UXADIFF, UXATPTR, UXINCNT and UXLRECL are defined
as 8-byte, binary value fields in big-endian format. In all other SELCOPY versions, these fields are defined as 4-byte
binary value fields in big-endian format.

¢ CHANGE operation now includes support for PTR and MATCHLEN (or MLEN) operands. The position of the first
occurrence of the CHANGE search string found within the field will be assigned to the specified PTR @variable and its
length assigned to the @variable or declared variable specified by MATCHLEN.

Note that, use of MATCHLEN is useful if the length of the search string is variable (i.e. if the search string is specified as a
regular expression).

¢ Regular expressions, which may be used in IF/AND/OR and CHANGE operations, now support additional
predefined_expression values ":h" (hexadecimal numbers), ":i" (C-language identifiers) and ":n" (numbers with or without
a decimal point).

¢ SLC for z/OS only: For spanned record input (RECFM=VS or VBS), SLC will allocate an input record buffer of length
equal to the LRECL value specified on the READ operation, otherwise a default buffer of length 64K. If a spanned, input
record exceeds this length, then ERROR 581 "LRECL ON RECFM=V INPUT RDW EXCEEDS CODED LRECL" is
returned.

¢ WRITE operation default is TRUNC to truncate trailing truncation characters (default blanks). However, if output is to any
of the following, the default now becomes NOTRUNC:

+ z/OS data sets and library members of RECFM V, VB or U.
¢ z/0OS HFS/ZFS (Unix-like) files.

+ VSAM KSDS and ESDS data sets.

+ Micro Focus indexed and record sequential files.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 6

Chapter 1. Program Elements

This chapter describes the basic elements used to write a SELCOPY program.

Character Set

SELCOPY supports only syntax written in single byte character set (SBCS) that conforms to the invariant (syntactic) character set
0640. A character belonging to character set 0640 has the same code point in all code pages. This is true of all ASCII (ISO) code
pages and most EBCDIC code pages.

SELCOPY C++ source is written using code page 819 (ISO-8859-1 Western Europe) and converted to code page 285 (EBCDIC
UK) for mainframe compilation. Therefore, by default, SELCOPY assumes that characters are at code points defined by these code
pages.

Code pages 819 and 285 contain the English alphabet characters, 10 decimal digits, special characters and other national
language and control characters. SELCOPY constants, programmer-defined names and comment text may contain characters at
any SBCS code point. Other SELCOPY syntax elements (e.g. keywords, delimiters and operators) are limited to alphanumeric
characters and certain special characters only. These are detailed in the following sections.

Alphabetic Characters

The 26 upper case and 26 lower case alphabetic characters that comprise the English alphabet.

Character [EBCDIC Hex ASCII Hex Character [EBCDIC Hex ASCII Hex
A CH 41 a 81 61
B C2 42 b 82 62
C C3 43 c 83 63
D C4 44 d 84 64
E C5 45 e 85 65
F C6 46 f 86 66
G C7 47 g 87 67
H C8 48 h 88 68
I C9 49 i 89 69
J D1 4A i 91 6A
K D2 4B k 92 6B
L D3 4C | 93 6C
M D4 4D m 94 6D
N D5 4E n 95 6E
0] D6 4F 0 96 6F
P D7 50 p 97 70
Q D8 51 q 98 71
R D9 52 r 99 72
S E2 53 s A2 73
T E3 54 t A3 74
U E4 55 u A4 75
V E5 56 v A5 76
W E6 57 w A6 77
X E7 58 X A7 78
Y E8 59 y A8 79
Z E9 5A z A9 7A

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 7

Chapter 1. Program Elements

Numerical Characters

Numerical Characters

The 10 numerical characters.

Character [EBCDIC Hex ASCII Hex Character [EBCDIC Hex ASCII Hex
0 FO 30 5 F5 35
1 F1 31 6 F6 36
2 F2 32 7 F7 37
3 F3 33 8 F8 38
4 F4 34 9 F9 39

Decimal Digits

SELCOPY recognises decimal digits written using numerical characters, 0 through 9. They are referred to simply as digits and
are used to write numerical arguments and constants in decimal notation.

Hexadecimal Digits

SELCOPY recognises 16 hexadecimal digits written using numerical characters, 0 through 9 and alphabetic characters, A
through F, which altogether represent decimal values 0 through 15. They are referred to as hex digits and are used to write
numerical constants or character string constants in hexadecimal notation.

Hex digits may be specified using upper and/or lower case characters. i.e. digits A,B,C,D,E,F may be written as: a,b,c,d,e,f.

Special Characters

The following table identifies non-alphanumeric characters that can have special significance in SELCOPY syntax.

Character |Description EBCDIC Hex ASCII Hex
b Blank 40 20
1 (1) Exclamation mark 5A 21
"(1) Quotation mark 7F 22
% Percent 6C 25
& Ampersand 50 26
' Apostrophe 7D 27
(Left parenthesis 4D 28
) Right parenthesis 5D 29
* Asterisk 5C 2A
+ Plus sign 4E 2B
, Comma 6B 2C
- Minus sign 60 2D
. Period / Decimal Point 4B 2E
/ Slash 61 2F
Colon 7A 3A
< Less than symbol 4C 3C
= Equals sign 7E 3D
> Greater than symbol 6E 3E
@ (1) Commercial at 7C 40
\ (1) Backslash EO 5C
A1) Circumflex accent BA 5E
= (1) Not sign 5F AC

(1)

2021/11/01 16:52:05

SELCOPY C++ (SLC) Language Reference and User Guide

The exclamation mark (1), quotation mark ("), commercial at (@), backslash (\), Circumflex (*) and Not sign (-) have
variant EBCDIC code points whereas, in ASCII code pages, only the Not sign (-) is a variant code point.

Chapter 1. Program Elements Composite Symbols

Composite Symbols

Special characters may be combined, with no intervening blank delimiters, to create composite symbols. The following table
identifies valid composite symbols and their meaning.

Character Meaning

<> or "< or -= Not equal to

<= or =< Less than or equal to

>= 0Or => Greater than or equal to

A> or o> Not greater than

< or o< Not less than

*< Comment ignoring statement separator
*> Comment to appear in output summary
/* End of program input

Case Sensitivity

Any combination of uppercase and lowercase alphabetic characters may be used in SELCOPY control statement syntax.

Lowercase characters used in most identifiers are treated as being their uppercase equivalents. Exception are characters in quoted
character constants, comment text and Windows, Unix, OpenVM or OpenMVS style fileid identifiers, where lowercase characters
are treated as being lowercase.

Statement Elements

A SELCOPY program is comprised of a number of control statements.

SELCOPY statement elements are categorised as delimiters, identifiers, constants, operators or comment text.

Delimiters
The following table shows delimiter characters that may be used to separate identifiers and constants.
Delimiter |Name Usage
b Blank A blank delimiter used to separate statement elements.
, Comma
=(1) Equals sign
! Exclamation mark |Statement separation character.
() Parentheses Used to enclose length or precision/scale specification for declared variables.
: Colon If the last character of the first statement identifier, denotes the identifier as being a label
name.
\ Backslash If the last non-blank character of a control file record, indicates statement continues on the
next control file record.

(1) The equals sign is a blank delimiter unless it is part of a composite symbol.

Delimiter characters may be used in other contexts. For example Backslash is the control file statement continuation character if
the last non-blank character of a record, but may also be used to connect the file path directory elements in a Windows or Unix
style file identifier. (e.g. \\MyPC\c\tmp\Myfile.txt and \usr\home\usera\sample.txt).

With the exception of colon (:), all delimiter characters may be surrounded by one or more of the blank delimiter characters ("b", ","
or "="). Any number of blank delimiters may be specified where one blank delimiter is supported. e.g.

DECLARE INREC CHAR (256)

A colon, when used as label name delimiter, must immediately follow the label name and must be followed by at least one blank
delimiter.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 9

Chapter 1. Program Elements Delimiters

Except where specified in a character string constant, multiple consecutive blank delimiter characters are equivalent to a single
blank delimiter character.

Identifiers

Identifiers are a series of characters that are not part of a comment or a constant.

Identifiers can be SELCOPY keywords or programmer-defined names.

The first character of an identifier must be preceded by a delimiter or occupy the first character of a control file record. Similarly the
last character of an identifier must be followed by a delimiter or occupy the last character of a control file record to be processed by

SELCOPY. Exceptions to this rule are environment variables and parameter variables which may be preceded or followed by any

character.

A programmer defined name identifier that represents a numeric value may also be preceded or followed by an arithmetic operator

when specified as a term in an expression.

One or more of the blank delimiter characters must separate identifiers that are not separated by some other delimiter, arithmetic

operator or control file record boundary.

Programmer-defined names that represent a variable or label cannot be the same as a keyword identifier that represents one of

SELCOPY's operation keywords that can be specified without a parameter keyword. In all other circumstances, SELCOPY can
determine whether or not the identifier is a keyword, in which case programmer-defined names may be the same as a keyword
identifier.

SELCOPY Keywords

Keyword identifiers are character strings that have special meaning to the SELCOPY program. Keywords may represent
operations that instruct SELCOPY to perform some action, or parameters to an operation.

Programmer Defined Names

Programmer-defined name identifiers are character strings that are used as variables, substitution variables, labels, filenames

and fileids.

A programmer-defined name may contain any character, though support for special characters depends upon the type of

programmer-defined name and the character's significance to SELCOPY. i.e. a programmer-defined name must not include a

delimiter or operator character where it may be interpreted as such. e.g.

¢ Any blank delimiter will denote a new identifier.

e Statement continuation will occur if the name has a trailing backslash (\) character and is the last statement identifier.

e An arithmetic expression may be compromised if it involves a programmer-defined name that contains plus (+) or
minus (-) symbols.

Because of this, it is generally advised that special characters should not be used in programmer-defined names. Furthermore,

programmer-defined names that conflict with SELCOPY keyword identifiers (or keyword identifier synonyms) should be
avoided.

The different types of programmer-defined names and their notation rules are as follow.

Internal Variables

Variables defined by SELCOPY for general use in SELCOPY program statements. The names of these variables are

pre-determined. e.g. RETCD, LINE and LRECL

Declared Variables

Variables defined by the programmer using the DECLARE operation or generated by SELCOPY for each column of

data returned by ODBC or SELCOPYi list input.

Apart from restrictions applicable to all programmer-defined names, declared variable names may be of any length and

can contain any character with the following exceptions:

1. The name must not contain apostrophes (') or quotation marks (").

2. The first character must not be special character ampersand (&).

3. The first character must not be a decimal digit (0 to 9).

4. The first character must not be special character percent (%) if all remaining characters are decimal digits.

A declared variable must not have the same name as an internal variable or an operation keyword. If so, no error

occurs but the identifier will be interpreted as referencing the internal variable or, if the first identifier in the statement,

the operation keyword.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide

10

Chapter 1. Program Elements Programmer Defined Names

@Variables

Integer value variables that have names of any length but must begin with the special character, commercial at (@).

Environment Variables

Variables that have been set by the operating system environment. i.e. Windows and Unix Environment Variables,
z/OS and CMS REXX variables and, in z/OS TSO only, z/OS system symbols.

An environment variable name comprises the name of the system environment variable enclosed within percent
symbols (%) with no intervening delimiter characters. e.g. %USERNAME% and %SYSNAME%

Alternatively, for z/OS systems only, the environment variable may be expressed as the variable name prefixed by an
ampersand (&) and suffixed by a period (.) with no intervening delimiters. e.g. &SYSNAME.

Unlike other identifiers, environment variable names do not need to be enclosed by delimiter characters or the limits of
the control file record. e.g. 'user’%eUSERNAME%#001’

Parameter Variables

Variables that represent parameter numbers 0 to 9 passed to the SELCOPY program, where parameter number 0 is
the SELCOPY executable program name.

A parameter variable name is comprised of a single decimal digit that corresponds to the parameter sequence number,
prefixed by the percent symbol with no intervening delimiter characters. e.g. %3 corresponds to the 3rd input
parameter.

Unlike other identifiers, parameter variable names do not need to be enclosed by delimiter characters or the limits of
the control file record. e.g. 'Parm%3:'

Equated Symbols

Equated symbols are names defined by the programmer using the EQU operation and represent an equated value.
Each occurrence of an equated symbol in control statements that follow the EQU operation will be substituted with the
equated value.

An equated symbol name can be of any length.

Labels
A label must be the first identifier in a statement and represents a location within the SELCOPY statements to which
processing may be directed via a GOTO or DO operation.
A label name can be of any length but the last character must not be delimiter character colon (:) which may optionally
be used to denote the end of a label.

File Names
A file name is 1 to 8 characters in length and is used by SELCOPY to identify an input or output data object.

Fileids

A fileid is the name by which a file or data set is known to the executing operating system. Fileid names are specified
on SELCOPY I/O statements for the purpose of associating or dynamically allocating the fileid to a file name.

A fileid name may consist of any character and be of any length and format supported by the executing operating
system. Fileids often include special characters that qualify or delimit portions of the fileid name. e.g. colon (:), slash (/),
backslash (\), period (.) and parentheses (()).

If a fileid name contains one of SELCOPY's blank delimiter characters, quotation marks, apostrophes or the separator
character, then it should be enclosed in quotations marks (") or apostrophes (') as appropriate.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 11

Chapter 1. Program Elements Constants

Constants

Constants are a series of characters that represent a value with an implied data type and length.

One or more of the blank delimiter characters must separate constants that are not separated by some other delimiter, arithmetic
operator or control file record boundary.

The value, data type and length of a constant are established by SELCOPY during control statement analysis processing and

cannot subsequently be changed by the programmer. See Data Elements and References for details on specification of constant
values.

Operators

The following table shows operators that may be used to separate identifiers and constants. Operators may be single characters,
composite symbols or SELCOPY keywords.

Operator Type Operator Description
Arithmetic _ + Add or unary plus
(Constants/Expressions) | Subtract or unary minus
Relational = b , Equal to
(Conditions) EQ EX EXACT
<> N A= o 4= Not Equal to
NE NOT
< Less than
LT
> Greater than
GT
<= =< > > Less than or equal to. Not greater than. High limit.
LE NGT HI HIGH
>= => " < Greater than or equal to. Not less than. Low limit.
GE NLT LO LOW
Bitwise ONES Bits selected by the mask are all on.
(Conditions) .
ZEROS ZEROES Bits selected by the mask are all off.
MIXED Bits selected by the mask are not all on or all off.
Logical OR Inclusive or. Bit is on if either of the bits are on. Otherwise bit is off.
(Data Modification) XOR Exclusive or. Bit is on if either (but not both) of the bits are on.
Otherwise bit is off.
AND And. Bit is on if both of the bits are on. Otherwise bit is off.

With the exception of the arithmetic operators plus (+) and minus (-) and relational operators equals (=), blank (b) and comma (,),
all operator must be surrounded by one or more of the blank delimiter character. e.g. The following statements are valid:

IF POS 23 LEN 4 TYPE=B >= 245
THEN @ARR=DVAR-245
THEN @VAL = DVAR + 20 - QARR

However, the following is invalid:

IF Q@ARR<DVAR

Comments

Comments may exist as the whole or part of a SELCOPY statement as a method of providing explanatory notes to programmers
reading the statements. The comment data itself is ignored by SELCOPY and does not affect the logic of the control statements.

Comment text begins at the first occurrence within a control file record of the special character asterisk (*) that is not part of a
quoted character constant. The asterisk must either be the first character of the statement or be preceded by one of the blank
delimiter characters.

Comment text is terminated by an exclamation mark (!) statement separator character (SEP option) that is not part of a quoted
character string constant, or the end of a control file record that does not end with the statement continuation character backslash
(\). (See statement continuation and separation for details.)

Because of their special significance, comment text may not include the separator character (see comment text ignoring statement

separator if this is required) nor end with the statement continuation character in the last non-blank character of the control file
record. Otherwise, comment text may contain any character. e.g.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 12

Chapter 1. Program Elements Comments

**Start of main processing loop. !DECLARE INREC1 CHAR(80)
READ DDIN1 INTO INREC1 * Input records into variable INRECIL.
IF EOF DDIN1 * If no more records. !THEN EOJ * End the program.

The following two additional forms of comment specification exist that have special significance to SELCOPY.

Comment Text in the Summary Block

Using composite symbol, asterisk greater than (*>), as the start of the comment will display the comment text next to a
statement's selection identifier number within the summary block of SELCOPY's output diagnostic report. This may be
particularly useful when diagnosing execution of SELCOPY programs that include a large number of control statements.

This type of comment is applicable only on statements that execute an operation other than one of the following:

¢ A program environment operation.
¢ An Input/Output operation other than PRINT, LOG and PLOG.
e An IF, OR or AND operation.

If specified on statements that do not match this criterion, the comment will be treated as a regular comment and so will not be
displayed in the summary block.

IF INCOUNT DDIN1 = 1
THEN PERFORM FIRST_RECORD *> Execute First_Record Subroutine.

Comment Text Ignoring Statement Separator

A composite symbol, asterisk less than (*<), as the first delimiter of a statement will treat all text that follows as comment text,
ignoring any subsequent statement separator characters. This type of comment is only terminated by the end of a control file
record that does not end with the statement continuation character backslash (\).

PRINT V1 * Comment. ! *< PRINT V2 !PRINT V3 * Only V1 is printed.
*< Using this type of comment allows \

the comment data to stream over a \
number of control file records.

Statements

Identifiers, delimiters, operators and constants are used to construct SELCOPY statements.

Null statements and statements containing only blank delimiters are ignored by SELCOPY. They may be entered as aesthetic
additions to the control statement file and serve only to increase the spacing between statements displayed in the execution output
diagnostic report.

By default, statements are terminated by the end of the control file record in which it occurs. Continuation of statements onto
second and subsequent file records is possible by entering the continuation character, backslash (\), as the last non-blank
character of the file record.

Similarly, statements may be terminated before the end of the control file record using the statement separation character,
exclamation mark (!) In this way, multiple statements may exist on a single control file record.

Non-blank statements have the following format:

>>——t————— operation ——————————————————————————————— et ><

l 77777 sub-operation ——————————————————————————— l

l 77777 assignment —————————————————————————————— l

l 77777 comment ————————————————————————————————— l

177+77 label ——————————————————————————— to———— l

l** label: ———4-——————"————————————— +**l
e .|
v \
+-—+- parm --—---— -t
operation

Execute a SELCOPY operation. The statement must start with one of SELCOPY's operation keywords.
sub-operation

A sub-operation statement must start with one of SELCOPY's sub-operation keywords. Sub-operations may be one of the
following:

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 13

Chapter 1. Program Elements Statements

0 A logical sub-operation (AND or OR) which must immediately follow an IF operation or another logical
sub-operation.

¢ The conditional sub-operation, THEN, which must immediately follow an IF operation, a logical sub-operation or
another conditional sub-operation (THEN or ELSE).

¢ The conditional sub-operation, ELSE, which must immediately follow a THEN sub-operation.
¢ The conditional sub-operation, CAT, which must immediately follow a READ operation.

assignment)) . .
An assignment statement assigns a value to a variable or a field.

comment
A comment statement contains only comment text, denoted by asterisk (*) as the first non-blank character of the
statement. See statement elements, comments for details.

label
A label identifies a location in the program to which a logic flow operation may direct SELCOPY's processing. A
terminating colon (:) is mandatory if the label identifies the start of a sub-routine that is to declare variables (DCLvar) and
assign them values passed to the sub-routine as parameters.

parm

A sub-routine parameter name to which a value specified on a DO /abel operation will be assigned.

Control Statement File

The SELCOPY executable can accept control statements passed to it as a parameter string or via an input file (data set).

Control statements passed as program parameters are done so as a continuous stream of text with the statement separator
character being used to delimit the individual statements. This is documented in more detail under Program Execution.

SELCOPY statements provided in a control file exist on one or more discrete lines (records) belonging to the file. Unless the
continuation character is used, the end of a control file record is the natural control statement delimiter.

Hierarchical file systems are native to Windows, Unix and OS/400 operating systems and also exist on z/VM and z/OS systems as
CMS BFS and z/OS HFS or ZFS file systems respectively. Control files belonging to a hierarchical file system contain variable
length lines that are terminated by end-of-line characters (e.g. LF or CRLF). Control statements may occupy all available
characters in this type of control file record.

Control file records belonging to native CMS files and z/OS data sets may be of fixed or variable length (RECFM=F or V).

For RECFM=V format control files, the defined LRECL includes the 4-byte RDW reducing the maximum length of a record by 4.
SELCOPY control statements may occupy all available characters of a RECFM=V variable length record up to this maximum
length.

For RECFM=F control files, the last 8 characters are reserved for sequence numbers and so are ignored by SELCOPY. Therefore,
control statements may occupy all but the last 8 characters of a RECFM=F fixed length record.

End of Program Statements

SELCOPY program control statement input is naturally terminated by the end of the control statement file. Exceptions to this are
as follow:

e The end of program indicator is encountered before the last record of the control statement file is read. The end of
program indicator is composite symbol (/) occupying the first two columns of a statement.

¢ The end of program indicator is passed as a control statement via the SELCOPY program parameters. Control
statements passed as program parameters are executed before those passed in the specified control statement file.

¢ No control statement file is specified, either via the -ctl program parameter or stdin (SYSIN for z/OS and z/VM CMS),
and no end of program indicator is passed to SELCOPY via the SELCOPY program parameters. In this case,
SELCOPY accepts its control statement input via the user's terminal.

e The input control file is a concatenation of a number of files (or data sets). In this case, unless the end of program
indicator is encountered first, end of program statements occurs at the last record of the last concatenated file.

e The end of program indicator is encountered within a control statement file that is itself included within supplied control
statements via the INCLUDE operation.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 14

Chapter 1. Program Elements Statement Length

Statement Length

SELCOPY control statements have a default maximum length of 4096 characters. This maximum may be extended (but not
reduced) using the CONTMAX program environment option.

This limit actually corresponds to the maximum length of a control file record or, if statement continuation is used, concatenation of
control file records. It also includes the length of any end-of-line characters. e.g. The default maximum length of a statement
starting in column 1 of a CRLF terminated control file record is 4094.

Therefore, the maximum length of a SELCOPY control statement is further reduced when the statement separator character is
used to specify multiple statements on the same control file record.

Where statements are provided as parameters to the SELCOPY executable, this maximum applies to the sum of the statement

lengths. However, the limit may further be reduced by environment constraints. e.g. Windows XP supports a maximum of 8191
characters entered at the command prompt or via a batch file.

Statement Continuation

SELCOPY statements in control files may span several, consecutive control file records using the statement continuation character,
backslash (\).

The statement continuation character must occupy the last non-blank character of each file record over which the statement will be
streamed.

[P oo, ..., T e A

’ ’ ’
READ EMPTAB SQL=" \
select substr (full_name,1l,25) NAME, assignment_id, \
P.effective_start_date, employee_number \

\

from per_all_people_f P, \
per_all_assignments_f A \

\

where employee_number > '7482' \

and P.person_id = A.person_id \

" * Input Oracle database result table rows.

Text belonging to the record following a record ending with the continuation character is joined to the previous record text so that
the first character of the second record overlays the continuation character in the first. Therefore, any statement element may be
split over the 2 lines. e.g.

o P S
IF POS 301 = 'Character constant text that streams acr\
oss two control file records.'

The number of records over which a statement may be streamed is limited only by the maximum length of a statement.

Statement Separation

By default, SELCOPY statements are delimited by the end of a control file record. However, the statement separation character (!)
may be used to delimit (separate) SELCOPY statements specified on the same control file record or provided via SELCOPY
program parameters.

The default statement separator character is exclamation mark (!). For z/OS and z/VM CMS, this default may be set by the
CBLNAME option, Separator. However, on all systems, the default may be changed or disabled altogether, using the SEP program
environment option in the SELCNAM file or in the SELCOPY control statements.

The statement separator character is not interpreted as being the statement separation character when specified as part of a
quoted character constant or card data input.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 15

Chapter 2. Program Execution

This chapter describes how to execute a SELCOPY program, the processing performed by the SELCOPY executable and the
generated output report.

Invoking the Executable

The SELCOPY executable is required to interpret control statements of a SELCOPY program.

On supported mainframe systems (z/OS and z/VM CMS) the name of this executable module is SLC. For all other operating
systems, the name of the executable is SELCOPY. For the purpose of this manual, the executable will be referenced as
SELCOPY.

This section describes the methods by which SELCOPY may be invoked in each environment.

Exploiting SELCOPY

SELCOPY programs can be general purpose applications that may be exploited from anywhere within the system. Networked file
systems are also transparent to SELCOPY programs and so may be used to process data on other systems.

SELCOPY may be executed using methods supported for any executable program. e.g. A SELCOPY program may be started from
any of the following:

e A command shell prompt. (e.g. z/VM CMS, z/OS TSO, Unix/Telnet terminal or Windows Command Prompt)
e The Windows "Run" dialog.

¢ A batch script file.

¢ A z/OS batch job step.

e A CLIST or REXX procedure.

e Any program written in a language supporting program CALL.

Locating SELCOPY

All operating systems have a method for dynamically locating a program executable if no specific location is provided as part of its
execution.

In a Windows or Unix environment the current working directory is searched before searching directories specified by the PATH
environment variable. In OS/400 the library list (*LIBL) is searched, in z/OS it is the standard program search path including the
active Link List, and in z/VM CMS all accessed mini-disks are searched.

For efficiency, the SELCOPY executable should be installed in a directory or library that is included in the default program search
path. The remainder of this publication assumes that this is the case.

SELCOPY Command

All SELCOPY command program parameter keywords, including -v, may be entered in any character case. e.g. -v is the same as

Microsoft Windows and Linux/Unix Systems:

>>-— SELCOPY ————————————- o o ><
I I
Fo—— +--| Program Parameters |[-———+-—+
| |
+- -V e +
0S/400:
>>—— CALL PGM(SELCOPY) ———4—————— e +-——><
| |
+- PARM(' -—-+--| Program Parameters |-———+- ') -+
I I
- -V +

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 16

Chapter 2. Program Execution SELCOPY Command

z/0S TSO and z/VM CMS:
>>-- SLC ————————————————— o Fom ><
I I
t— +--| Program Parameters |[-——+-———— +
| |
- v === +
z/0OS TSO (Alternative):
+— CAPS —+
| |
>>-— CALL 'loadlib(SLC)' —4-———————————— o +-><
I [
+- '/ —-+-| Program Parameters |[-+- ' -+ +- ASIS -+
| |
+- v = +
z/0S Batch:
>>- //name EXEC PGM=SLC +-——————— Fom ><
| |
+- ,PARM=' -+--| Program Parameters |[-——+- ' —+
I |
+- VY e +
Program Parameters:
———tm oo B et e e +——>
| | I | I I
| +———— + | +- -—ctl statement_file —-—-+ +- -1lst report_file ——+
| v [(3) (3)
+—+-— parm —-—+-+
R B Fo Fo— e +——>
| [(1) | I |
+-- -log log_file --+ +-- -—nam nam mod --+ +-— -notrap —-———-———--— +
(3) +-- -notr ———————-————-— +
> o |
| |
| e +
| v (2) [
+--+-— | statement --+--+

(1) Program parameter -nam is applicable only in z/OS systems.

(2) Exclamation mark (!) is the default statement separator character. This may be changed by setting the SEP program
environment option in SELCNAM.

(3) In Microsoft Windows, apostrophes (') are valid fileid characters. However, SELCOPY will strip apostrophes used to
enclose a fileid.

Program Parameter Descriptions:

-V

Outputs 2 report lines to stderr which, for z/VM CMS, z/OS TSO and Batch corresponds to FILEDEF/DD name SYSOUT.

Note that stderr output may be redirected using the -log program parameter or a redirection symbol, 2> (two greater than)
or to append to existing stderr output, 2>>.

The first is the standard output list header comprising the SELCOPY version & release, licensed organisation & location
and current date & time. The second report line comprises the build level & date of the SELCOPY release.

SELCOPY/WNT 3.20 at CBL - Bridgend UK (Internal Only) 2013/12/10 17:30
Build Level=001 2013/10/19 22:09 (Latest change).

parm
Identifies blank delimited parameter strings that are to be passed as input and processed by the SELCOPY control
statements.

Up to 9 parameters may be specified and referenced within the SELCOPY program by parameter variables and the

internal variable, ARG. If more than 9 parameter strings are specified, the program may access the additional parameters
via the internal variable PARM.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 17

Chapter 2. Program Execution SELCOPY Command

-ctl

-1st

-log

—nam

Parameters must be enclosed in quotation marks (") or apostrophes (') if the parameter string contains any of the
following:

1. Blank characters.
2. Characters that have special significance to the executing operating system.

Beware that, in Unix systems, some special characters are interpreted despite being supplied in enclosing
quotes, e.g. backslash (\), dollar ($), quotation mark (") and grave accent (*). To prevent this, the special
character must be escaped using the escape character backslash (\).

3. Lower case alpha characters that must not be upper cased.

Note that some Unix operating systems (e.g. IBM AIX and Oracle Solaris) strip a single set of enclosing quotes (quotation
marks or apostrophes) from each parameter specified via a command shell. Where this occurs, to preserve alpha
character case in command line input, the parameter strings should be enclosed within two sets of quotes, one set of
apostrophes, one set of quotation marks. e.g.

selco '"./inp.test.file"' '"/tmp/output.test.file"'
Py P P

selcopy "'Wuthering Heights'" "'Emily Bronte''s Novel'"

statement_file
Identifies statement _file, the fileid of the SELCOPY program control statement file.

For Windows and POSIX systems, the directories specified by environment variable, PATH, will be searched if
statement_file is a relative file path.

If -ctl statement_file is omitted, then SELCOPY accepts control statement input from stdin which, for z/VM CMS, z/OS
TSO and Batch, corresponds to FILEDEF/DD name SYSIN. Control statements may also be provided as program
parameters (see !statement below). These control statements will be processed before statements passed via
statement_file or stdin input.

SELCOPY input via stdin is achieved using the redirection symbol less than (<) or as piped output from another source
using the pipe symbol (|). If stdin is used as control statement input, it cannot then be used as data input via a READ
STDIN operation. Therefore, specification of a control statement file via the -ctl parameter is recommended whenever
possible. See your operating system documentation for use of stdin redirection and pipes.

If no control statements are passed to SELCOPY from any source, then, in a z/OS batch environment, the job ends with
ERROR 524. In all other environments SELCOPY waits for input from the user's terminal and does not begin execution
until the control statement input is ended. Control statement input via the terminal must be ended using the end of
program indicator (composite symbol "/*" in the first column of the input) or, if no CARD input is performed, using the END
operation keyword.

report_file
Identifies report_file, the fileid of the SELCOPY list (diagnostic report and printed data) output file. Printed data is output
from the PRINT and PLOG operations.

In Windows and POSIX (e.g. Linux and Unix) environments, SELCOPY will direct its list output in the following order of
precedence:

1. The report_file fileid specified on -Ist program parameter.

2. The stdout data stream if redirection symbol greater than (> or >>) is specified.
3. Afileid identified by the SLCLST environment variable.

4. The fileid "SELC.LST" in the current directory.

If stdout is used for list output, then it cannot then be used as data output via a WRITE STDOUT operation.

In z/VM CMS and z/OS non-POSIX environments (both TSO and Batch), SELCOPY will direct its list output in the
following order of precedence:

1. The report_file fileid specified on -Ist program parameter.

2. FILEDEF or DD name allocated to SYSPRINT.

3. For z/OS only, data set with DSN "prefix.SELC.LST" where prefix is the ACF user name assigned to the
executing job.

4. For z/VM CMS only, the fileid "SELC LST A".

log_file
Identifies log_file as the destination file for all SELCOPY error messages that would otherwise be written to the terminal,
and all data logged by the SELCOPY program using the LOG or PLOG operation.

If -log log_file is omitted, then SELCOPY directs logged output to stderr which, for z/VM CMS, z/OS TSO and Batch
corresponds to FILEDEF/DD name SYSOUT. The -log program parameter is equivalent to stderr redirection using
composite symbols two greater than (2> or 2>>).

nam_mod
Applicable only in z/OS systems, identifies nam_mod, the alternate name of the CBLNAME options load module to be
loaded by SELCOPY.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 18

Chapter 2. Program Execution Sample Execution

If it exists, the module named CBLNAME is loaded first to establish any update to the default statement separator
character, otherwise the default of exclamation mark (!) is assumed. The alternate load module nam_mod is then loaded
to establish all other options applicable to execution of SELCOPY.

—notrap

| -notr

Disable default interrupt handling by SELCOPY so that any abnormal termination event, including interruption by the user,
will be handled by the system.

This behaviour may also be achieved using the program environment option ABTRAP or TRAP.

!statement
Specifies one or more SELCOPY control statements that are to be processed before control statements input from
another source. If specified, statement program parameters must follow any other program parameter. e.g.

SELCOPY -ctl selccomp.ctl 'equ IN1 abc.fil lequ IN2 xyz.fil

Each statement must be preceded by the statement separator character, which, by default, is exclamation mark (!) but
may be set to another character using the program environment option, SEP, in the SELCNAM initialisation file. Note that,
in the Unix csh or tcsh shell, exclamation mark has special significance and so must be escaped (/!) or followed by blank
character.

If control statement input is not terminated by composite symbol "/*" as the first characters following a statement separator
character (i.e. I/*), then SELCOPY will expect input of further control statements from another source. This may be the
statement_file specified by program parameter -ctl or stdin input via file redirection, a pipe or the user's terminal.

If control statement input is terminated by a program parameter statement, then no attempt is made by SELCOPY to input
further control statements as program parameters or from any other input (-ctl statement _file or stdin).

Sample Execution

The following provides samples of SELCOPY (SLC) execution in different environments:

z/0S JCL

Execution of SELCOPY requires specification of a control statement source and an output listing destination. In a z/OS (and
z/VM CMS) environment, these default to the SYSIN and SYSPRINT ddname allocations, respectively.

Any input and output data set ddnames referenced within the SELCOPY control statements must also be allocated. e.g.

00001
00002
00003
00004
00005
00006
00007
00008

<==—t=-——=]-———t———-2 =t -3t -5 =T =
//SAMPLE1 EXEC PGM=SLC
//INPDD DD DISP=SHR,DSN=USER123.SLC.INPFILE
//OUTDD DD DISP=SHR,DSN=USER123.SLC.OUTFILE
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
READ INPDD
WRITE OUTDD
/*

The SYSIN control statement input and SYSPRINT list output may be overridden using parameters -CTL and -LST respectively.
In batch, these parameters are passed via the JCL EXEC statement PARM field. Each of the -CTL and -LST parameters may
specify a ddname or data set name (DSN). e.g.

00001
00002
00003
00004
00005
00006
00007
00008

<———+-—-——-1-—--4-—-2-——--F-———-B3-—-—F———f-—— -5 —————=T -
//SAMPLE2 EXEC PGM=SLC,PARM=('-CTL SLCINP -LST SLCPRT')
//INPDD DD DISP=SHR,DSN=USER123.SLC.INPFILE
//OUTDD DD DISP=SHR,DSN=USER123.SLC.OUTFILE
//SLCPRT DD SYSOUT=*
//SLCIN DD *
READ INPDD
WRITE OUTDD
/k

Use of -CTL and -LST allows SYSIN and SYSPRINT ddnames to be used by other programs executed by the SELCOPY
program via the CALL operation.

Existing input and output data sets used in the SELCOPY program need not be pre-allocated if parameter DSN is used on the
SELCOPY 1/O operations. In the following sample, SELCOPY will perform a dynamic allocation for input ddname INPDD and
output ddname OUTDD for the specified data set names.

00001
00002
00003
00004
00005
00006

<--—+--——1-——+—-2-—-+-——--3-——-4-——--4-———4-———-5-———F————6————+———=T—
//SAMPLE3 EXEC PGM=SLC,PARM=('-CTL SLCINP -LST SLCPRT')
//SLCPRT DD SYSOUT=*
//SLCIN DD *
READ INPDD DSN='USER123.SLC.INPFILE'
WRITE OUTDD DSN='USER123.SLC.OUTFILE'
/*

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 19

Chapter 2. Program Execution z/OS JCL

Since SELCOPY also accepts control statement input via the parameter string, use of -CTL or SYSIN may be omitted
altogether. This is not typical and can only be performed for brief SELCOPY programs since the input PARM field is restricted to
100 characters only.

<--—+--—1-—+——2-—-+——--3-——-4-——--4-————4———-5-——F————6————+———=T—
00001 //SAMPLE4 EXEC PGM=SLC,PARM=('-LST SLCPRT !READ INPDD DSN="USER123.SLC.
00002 // INPFILE" !WRITE OUTDD DSN="USER123.SLC.OUTFILE" !END')

00003 //SLCPRT DD SYSOUT=*

z/0S TSO/E

Like z/OS batch, SELCOPY execution in a z/OS TSO/E (or z/VM CMS) environment defaults control statement input and listing
output to be SYSIN and SYSPRINT respectively. However, when running SELCOPY from a CLIST or REXX procedure, use of
the -CTL and -LST parameters is preferrable since it removes the requirement of having to allocate and subsequently free
SYSIN and SYSPRINT ddnames.

The following sample REXX procedure accepts a DSN or library member input parameter and executes SELCOPY with the
-CTL and -LST parameter arguments assigned to values based on a standard library structure.

<--—+--—1--—+-——2-—+—-3-——-4-——--4-——-—4-——--5-——F+————6-————+———-T—
00001 /* REXX */
00002 parse arg inctl

00003
00004 address TSO
00005 pref = sysvar("syspref") /* TSO Prefix */
00006
00007 if pos(".",inctl) = 0 /* No dot => member name. */
00008 then do; olist = pref".SLC.LISTING("inctl")"
00009 inctl = pref".SLC.CTL("inctl")"
00010 end
00011 else olist = pref".SLC.LISTING (SLCLIST)"
00012
00013 "SLC -CTL "inctl" -LST "olist
SELCOPYi

SELCOPYi interactive utility component of the SELCOPY Product Suite for z/OS and z/VM CMS includes the facility RUNSLC
for foreground execution of the SLC program module.

Control statements are read from the focus window text edit view (with or without unsaved alterations) and the resultant list
output displayed in a new text edit view. The list output is assigned a temporary DSN but not saved.

Execution of primary command RUNSLC at the command prompt of a text edit view will start the facility. e.g.

Command> RUNSLC Scroll> Csr
B T It B e T It Sty A

00001 ** NBJ.CTL (SSTEMP) *** L=001 --- 2016/02/22 11:25:33

00002

00003 read indd dsn="'CBL.CBLI320.RS32002.DB2.DBRMLIB' dir

00004 print
SELCOPYi also supports execution of programs in the TSO environment directly from any command prompt. Therefore, the
SLC program may be executed at any SELCOPYi command prompt.
Furthermore, in combination with the Action Key facility supported by SELCOPYi text edit views, SLC commands may be saved
in text files for subsequent execution. The following sample command text may be entered in any data set or library member
(e.g. as comment data in a JCL batch job member). When edited using SELCOPYi, a command may be executed by
positioning the cursor on the text and pressing the Action key (default <F4>).

<TSO SLC -CTL CBL.SELCOPY.CTL (5Q12836) -LST CBL.SELCOPY.SYSPRINT (SQ12836)

<TSO SLC -LST * !read 'USER123.SELCOPYI.CMX' nordw !print stopaft=22 !end

UNIX/Linux Shell

The command selcopy may be executed at any shell prompt or from a shell script.

By default, SELCOPY will accept control statement input from the stdin stream and direct its list output to stdout. Use of
parameters —ct1 and -1st will nominate the fileids to be used in place of stdin and stdout respectively. e.qg.

selcopy -ctl ~/selcopy/ctl/ssfstr -1lst ~/selcopy/lst/ssfstr

Using —ct1 and -1st will allow data streamed from stdin and to stdout to be used on SELCOPY 1/O operations.

If no input control file is specified, then SELCOPY waits for input from the default stdin input (i.e. the users terminal). If no list
output file is specified, output is written to the file specified by environment variable SLCLST or SELC.LST if $SLCLST is null.

The following example assigns environment variable SLCLST which is used by the SELCOPY execution that follows. The
SELCOPY input uses abbreviated operation and parameter keywords to reduce the length of the command syntax. It also

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 20

Chapter 2. Program Execution UNIX/Linux Shell

contains special characters "I" (exclamation mark) to separate the control statements and "" (apostrophe) to delimit quoted
character constants. Since these characters have significance in the command shell, they must be escaped using the shell
escape character "\" (backslash) in order to avoid interpretation before being passed to SELCOPY.

The program itself will list all files in the user's home directory, input text from these files and report all lines containing the
character string "user".

export SLCLST=~/selcopy/sstemp_lst
selcopy \!rd \'$HOME%/*\' dd \!if dir \!'t log \!t gg \!if p any = \'user\' \!t log \'Data: \' fr 1 \le

Microsoft Windows Shell

The command selcopy may be executed at any Microsoft Windows command shell, Visual Basic or command shell script.

Like SELCOPY on UNIX platforms, control statement input is read from the stdin stream and list output is directed to stdout by
default. Parameters —ct 1 and -1st will nominate the fileids to be used in place of stdin and stdout respectively.

Also, stdin input from a terminal is used if no input control file is specified, and stdout output is written to the fileid assigned to
environment variable SLCLST (default SELC.LST) if no list output file is specified.

The following example demonstrates setting the current directory prior to executing a SELCOPY that references relative fileid
paths.

cd /d "c:\Documents and Settings\NBJ\selcopy\"
selcopy -ctl ctl\ssinv2l_ctl.txt -1st 1lst\ssinv2l_lst.txt

Program Environment

Every execution of a SELCOPY program is subject to environment options which govern the operation of the SELCOPY
executable. e.g. Statement separator character interpretation and formatting of SELCOPY's list file (diagnostic report and printed
data) output.

Program environment options may be specified for individual SELCOPY programs but system-wide defaults, affecting all
SELCOPY programs, may also be configured by the systems programmer, usually as part of the SELCOPY product install process.

This section focuses on configuration of system-wide defaults using the SELCNAM initialisation file and, for mainframe platforms
only, the CBLNAME options module.

CBLNAME

Applicable to both the SELCOPY and SLC executables on mainframe systems, the CBLNAME option module is assembled from a
configured assembler language source file using the assembly software provided as part of the operating system.

The CBLNAME assembler source file comprises a single, CBL supplied macro call with parameters that define many, but not all of
the SELCOPY environment options. The most important option is the name of the SELCNAM initialisation file (data set).

Since CBLNAME defines system wide options, any update will affect all SELCOPY programs and should be restricted to authorised
users only.

For full information on each CBLNAME option and for direction in updating the CBLNAME module in a z/OS system, see the
"SELCOPY Product Suite Customisation Guide".

Téo update and re-assemble CBLNAME in z/VM CMS, see the "SELCOPY Product Suite Install Guide for VM/CMS and VM/VSE
ystems".

CBLNAME is the default name of the options module. However, for z/OS systems only, an alternative name may be specified when
SELCOPY is started using the -nam nam_mod program option.

CBLNAME SLC Options

The following CBLNAME options are recognised by the SLC executable. Other options in CBLNAME apply to other executable
elements of the SELCOPY Product Suite (i.e. SELCOPY, SELCOPYi and CBLVCAT).

SNamDsn="'selcopy.nam'

Identifies selcopy.nam, the name of the default SELCOPY environment initialisation file (data set) that gets allocated to
FILEDEF/DD name SELCNAM. See SELCNAM or SELCOPY.NAM for description of this file.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 21

Chapter 2. Program Execution CBLNAME SLC Options

This name may be overridden by allocating FILEDEF/DD name SELCNAM to a different file (data set) name prior to
execution of SELCOPY.

If SNamDsn is not set and SELCNAM has not already been allocated, then selcopy.nam defaults to SELCOPY NAM in
z/VNM CMS and prefix.SELCOPY.NAM in z/OS systems, where prefix is the ACF user name assigned to the executing
job.

Separator='char
Separator specifies the default statement separator character, char.

This option may subsequently be overridden by the program environment option SEP, specified in SELCNAM or within
the SELCOPY program control statements. The default is exclamation mark (!).

SOpsMsg=0 | ALL | NOSEL | NOCTL | NONE
Determines which, if any, of SELCOPY error message classes are logged to the log output file or SYSOUT. Default
SYSOUT is the z/VM CMS console, the z/OS TSO console or z/OS operator console.

The default value is 0 (or ALL) indicating that all messages are logged.

SBannerMsg=YES | NO
Determines whether or not on startup of SELCOPY, the banner message is logged to the log output file or SYSOUT.

This option may subsequently be overridden by the program environment option (NO)BANNER, specified in
SELCNAM or within the SELCOPY program control statements.

The default value is NO indicating that the banner message is not logged.

SRDW=YES | NO
Determines whether or not input record data belonging to a zZOS RECFM=V data set includes the 4-byte Record
Descriptor Word (RDW) prefix.

This option may subsequently be overridden by the program environment option (NO)RDW, specified in SELCNAM or
within the SELCOPY program control statements.

The default value is YES indicating that the RDW is included.

SNotFoundMsg=YES | NO
Determines whether or not the following, 25 character data message is moved to the input data field following an
unsuccessful direct read by key or record number.

-—— KEY/REC NOT FOUND ---

If this input message is suppressed, the program will have to test for the appropriate return code from the READ
operation.

The default value is YES indicating that the message data is returned.

SPrtStopAft=intval
Specifies intval, a positive integer value which is used as the default STOPAFT value applied to all PRINT or PLOG
operations only. i.e. Each PRINT and PLOG operation within a SELCOPY program will be executed no more than
intval number of times in the same run.

This option may subsequently be overridden by specification of keyword parameter STOPAFT on individual PRINT
and PLOG operations within the SELCOPY program control statements.

The default value is 0 indicating no limit for PRINT and STOPAFT 50 for LOG.

SCPCmds=YES | NO
Applicable only to z/VM systems, SCPCmds determines whether or not CP command streams may be executed from
SELCOPY program control statements using the CP operation.

The default value is YES indicating that CP commands may be executed.

SELCNAM (SELCOPY.NAM)

In z/OS and z/VM systems, the SELCOPY initialisation file is referenced as SELCNAM. On all other systems, it is referenced as
SELCOPY.NAM, the actual fileid of the file processed by SELCOPY. For the purpose of this manual, the SELCOPY initialisation file
will be referenced as SELCNAM.

In z/OS and z/VM systems, the SELCNAM file is identified as being the data set allocated to the FILEDEF/DD name SELCNAM. If
SELCNAM is not already allocated, it gets automatically allocated to the data set name specified by CBLNAME option SNamDsn. If
SNamDsn is unset, a DSN of "tsopfx.SELCOPY.NAM" or "SELCOPY.NAM" is used. In all other systems, the SELCOPY.NAM file
must exist in the file search path.

SELCNAM is an editable text file and may include only comment text and SELCOPY OPTION operations that define program
environment options. Because updates to SELCNAM environment options affect exceution of all SELCOPY programs, it should be
protected against unauthorised read-write access.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 22

Chapter 2. Program Execution

SELCNAM (SELCOPY.NAM)

If a SELCNAM record contains the end of program input composite symbol (/*) in column 1, then records that follow this indicator
are not read and SELCOPY processing continues with program control statement input.

Update of SELCNAM in a z/OS environment should not be performed on the active SELCNAM data set due to an exclusive ENQ
being placed on the data set by the system editor. Appropriate procedures for updating SELCNAM in z/OS and z/VM CMS systems
are detailed in the "SELCOPY Product Suite Customisation Guide" and the "SELCOPY Product Suite Install Guide for VM/CMS
and VM/VSE Systems" respectively. Similar care should be taken when updating SELCNAM in any system where exclusive file
locking occurs when editing a file. This will result in unsuccessful execution SELCOPY programs due to failure to open the

SELCNAM file for input.

SELCNAM SLC Options

See operation keyword OPTION for detailed information on each of the program environment options.

The following SELCNAM program environment options are mandatory and must reference valid entries as supplied by Compute

(Bridgend) Ltd:

SITE Specifies the licensed company name and geographical location.
RANGE Specifies the licensed, operational date range.
PASS Specifies the unique 8-byte password expressed in hexadecimal.

The following program environment options may also be included in SELCNAM:

ABTRAP
TRAP | NOTRAP

Enable or disable SELCOPY's Interrupt handling.

BANNER | NOBANNER

Enable or disable logging of SELCOPY's banner message to the log output file or stderr

BAN | NOBAN (SYSOUT) on startup.

CALLTYPE Controls the CALL operation linkage for calling external routines.

CBLSQLOG Identifies an output file used specifically to log calls to the ODBC driver manager.

SQLLOG

LOGSQL

CONTMAX Extends the maximum length of a control statements.

DATAWIDTH Controls the width of printed data in SELCOPY's list output.

DEFAULTFP Controls the format of a floating point field if not explicitly specified.

DEFFP

DFLTFP

DEFDIR Identifies the default current, hierarchical file system working directory.

DUMPALL Enable or disable print of second and subsequent, duplicate TYPE=D (dump) format print lines.

DUMPENC Identify the characters to be used to delimit the character representation of TYPE=D (dump)
format printed data.

ENVFAIL Specifies the action to be taken when environment variable or parameter variable substitution fails

because the variable has no assigned value.

ENVVAR | NOENVVAR

Enable or disable environment variable or parameter variable substitution.

ERRLIM Determines the maximum number of control statement errors that are reported before control
ERRMAX statement analysis stops and the program is terminated.

FILL If a user work area buffer is defined (OPTION WORKLEN), then this option identifies the default
PAD character to be used to overwrite residual data. This is data that is left in the buffer when an input

record is of a shorter length than that of the previous record read by the same READ operation.

KEYENC | NOKEYENC

Applicable to the SELCOPY for Windows keyboard input feature, KEYENC identifies the Window
special key name delimiter characters. Alternatively, special key name processing may be
disabled.

2021/11/01 16:52:05

SELCOPY C++ (SLC) Language Reference and User Guide 23

Chapter 2. Program Execution

SELCNAM SLC Options

KEYENCERR | Applicable to the SELCOPY for Windows keyboard input feature, this option enables or disables

NOKEYENCERR RC=8 set when a Windows special key is not recognised by SELCOPY.

LIBNAME Identifies the name of the default library shared object in which routines called by a SELCOPY
program may be found in option CALLTYPE DIRECT is in effect.

MFC Indicates that all processing of VSAM files in SELCOPY programs is to use the Micro Focus
VSAM interface.

ODBCPASS Specifies the default password supplied by SELCOPY programs for user authorisation when

OPASS attempting to access protected objects (databases) via ODBC.

PAGEDEPTH Controls the maximum number of lines per page in SELCOPY's list output.

PAGEWIDTH Controls the width of page headers and TYPE=D (dump) format printed data in SELCOPY's list
output.

PRINTABLE Identifies hexadecimal code points of characters within the local code page that are to be treated

as being printable by SELCOPY for PRINT and PLOG output.

PRTCTL | NOPCTL

Enable or disable output of SELCOPY program control statements in the diagnostic report portion
of the SELCOPY list output.

NOPSUM Disable output of SELCOPY program execution summary information in the diagnostic report

NOPTOT portion of the SELCOPY list output.

NOPRINT Disable output of both the SELCOPY program control statements and the execution summary

NOP information (i.e. all diagnostic information) in the SELCOPY list output.

RDW | NORDW Enable or disable inclusion of the 4-byte Record Descriptor Word (RDW) prefix in a record read
from a RECFM=V, RECFM=V2 or RECFM=MFYV file.

SEP Identifies the statement separator character.

SORT | NOSORT

For hierarchical file systems only, this option identifies the sort order of input directory records,

SORTDIR and so the order of input files, returned by a READ DIR or DIRDATA operation.

SSN Identifies the ODBC Data Source Name assigned to the default data object (database) accessed
by SELCOPY programs via ODBC.

SUB | NOSUB For hierarchical file systems only, this option identifies the number of levels of nested

SUBDIR sub-directories, belonging to the input directory, that are to be processed by a READ DIR or
DIRDATA operation.

TABSIN For RECFM=U input only, this option identifies the tab interval which indicates the position to

which text following an input tab character (x'09') will be shifted.

UNPRINTABLE

Identifies hexadecimal code points of characters within the local code page that are to be treated
as being unprintable by SELCOPY for PRINT and PLOG output.

USER

Specifies the default userid supplied by SELCOPY programs for user authorisation when
attempting to access protected objects (databases) via ODBC.

SELCMSG (SELCOPY.MSG)

The text of all control statement analysis and selection time messages set by SELCOPY is obtained from a single plain text file.

In z/OS and z/VM systems, the SELCOPY message file is referenced as SELCMSG. On all other systems, it is referenced as
SELCOPY.MSG, the actual fileid of the file processed by SELCOPY. For the purpose of this manual, the SELCOPY message file
will be referenced as SELCMSG.

In z/OS and z/VM systems, the SELCMSG file is identified as being the data set allocated to the FILEDEF/DD name SELCMSG. If
SELCMSG is not already allocated, it gets automatically allocated to the data set name specified by CBLNAME option SNamDsn
except that the last 3 characters of the DSN are replaced by "MSG". If SNamDsn is unset, a DSN of "tsopfx.SELCOPY.MSG" or
"SELCOPY.MSG" is used. In all other systems, the SELCOPY.MSG file must exist in the file search path.

If the SELCMSG file is missing or cannot be found, then the text of any message returned by SELCOPY will be: Error Number
not in selcopy.msg file

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 24

Chapter 2. Program Execution SELCMSG (SELCOPY.MSG)

Program Processing

A SELCOPY program is started using the SELCOPY executable. SELCOPY's processing comprises the following 5 steps:

1. Establish licence details and program environment.
2. Control statement analysis and interpretation.

3. Output file open.

4. Statement selection and execution.

5. End of job file close.

The steps are performed in the order specified and are described in this section.

Establish Environment

SELCOPY's initial step is to read the SELCNAM file to verify licence details and then to process other OPTION operations to
establish the program execution environment.

For z/OS and z/VM CMS systems, reading the SELCNAM data set involves first loading the CBLNAME module to discover the
location of the SELCNAM data set, and then dynamically allocating the data set to FILEDEF/DD name SELCNAM for subsequent
file open. Certain environment options are also initialised from CBLNAME, prior to processing SELCNAM. See Program
Environment for details.

If licence details provided via the SITE, RANGE and PASS options are not consistent with the values supplied by Compute
(Bridgend), then the following messages are returned in the logged output and/or the SELCOPY list diagnostic report.

***% ERROR 153 *** INVALID OPT IN "SELCOPY.NAM" FILE

*** ERROR 124 *** CHECK EXPIRY DATE

In this case, control statement analysis is still performed for the SELCOPY program, however, no subsequent steps are performed
due to the control statement errors.

If any other invalid statement exists in the SELCNAM file, the following message is logged but processing continues. Note that nnn
is the record number within SELCNAM at which the error was detected.

Syntax err in selcopy.nam :nnn

Control Statement Analysis

Before SELCOPY executes the supplied control statements, they are first analysed to detect any syntax errors and to process
program environment operations including options that override system defaults.

Control statement analysis is performed on each statement read sequentially from start to finish. This order is not affected by any
internal sub-routine calls or GOTO operations.

Control statements are analysed one at a time and are each converted into an internal control block. Program environment
operations, e.g. OPTION and EQU, are converted and then executed immediately and so do not affect control statements that have
already been analysed. e.g. An equated symbol substitution will not occur for occurrences of the symbol in statements for which
analysis processing has already occurred.

The following identify the processing performed during control statement analysis.

Selection Identifiers
All control statements that execute an operation or sub-operation, or perform a variable assignment are assigned a unique
selection identification number. Exceptions to this are program environment operations (e.g. EQU, DECLARE, OPTION), the IF
logic operation and the AND and OR logic sub-operations.
The selection identifier assigned to a statement is the next integer value in an ascending sequence of integers starting at 1.

The selection number is displayed next to the control statement in the SELCOPY list diagnostic report and is used to reference
the statement in the SEL-ID column of the SELCOPY program execution summary information.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 25

Chapter 2. Program Execution Variable Substitution

Variable Substitution

Identifiers within a control statement that correspond to substitution variable names are replaced by the assigned value before
syntax validation of the statement is performed.

If a substitution variable has no equivalent assigned value, then the following occurs:
¢ For equated symbols, no substitution is performed and syntax validation on the statement is performed as is. Note that
an equated symbol value will not exist in the case where a statement which references the equated symbol is
processed before the statement containing its definition (EQU operation).

e For parameter variables and environment variables, the action defined by the ENVFAIL option.

File Open

Statements containing a READ or WRITE operation on a file with no explicit or implied DEFER parameter, will first perform any
required dynamic allocation for the specified fileid (DSN) and then open the file for input, input for update or output processing
as required by the operation. If DEFER is in effect, the open of the input or output file is deferred until the statement is executed
at selection time processing.

Input files are opened immediately following successful validation of the statement containing the READ operation. Output files
are opened at the end of control statement analysis, once all control statements have been processed with no resulting errors.

By default, SELCOPY WRITE output to non-VSAM files where parameter APPEND is omitted will re-initialise the file so that the
file size is zero before writing new data. Therefore, delaying the open of output files until selection time processing is about to
begin ensures that data that may already exist in the output files is preserved if the SELCOPY program fails to execute.

List input, read via a READ LIST operation, is generated whenever the open is executed. Declaration and open of table cursors
via ODBC for READ and WRITE operations that are to be performed on data base tables, is always deferred until selection time
processing. A WRITE operation that performs window keystroke output does not require an open.

Note that file open is deferred for a file if any of the following is true:
1. Parameter DEFER is specified on the first READ operation or any WRITE operation that specifies the file name.

2. Dynamic allocation is to be performed for the file name and the fileid on the operation is specified as a field definition or
a declared variable.

3. For input, a statement containing an OPEN or CLOSE operation for the file name is processed before the statement
containing the first READ operation for the same file.
For output, a statement exists which contains an OPEN or CLOSE operation for the same file name specified by the
WRITE operation. The OPEN or CLOSE statement may be processed after the WRITE statement.

Prime Input

During statement analysis, the prime input is determined as being the file or database result table specified by the first READ
statement, regardless of whether it is opened at control statement analysis or the open is deferred until selection time
processing.

The concept of a prime input is used by SELCOPY execution to determine the natural end of SELCOPY selection time
processing. The file name assigned to the prime input is also the default used when a file name argument is not specified on an
IF operation that tests for EOF, INCOUNT, DIR or DATA.

By default, SELCOPY selection time processing finishes and end of job processing is triggered when a READ operation is
performed for the prime input and there are no more records left to read. e.g. the last record has already been read for forward
sequential input.

If no READ operation statements exist then no prime input is established and the program ends following execution of the last
selected control statement.

Control Statement Errors

Control statement analysis errors may be flagged for individual control statements that are determined to be invalid or, in the
case of READ and WRITE operations, for which a file allocation or open has failed.

If an error is flagged for a control statement the following occurs:
1. If output of SELCOPY program control statements to the diagnostic report portion of the SELCOPY list output has
been disabled (option NOPCTL or NOPRINT), then it is re-enabled. All subsequent statements processed by control
statement analysis will be written to the SELCOPY list.

2. The control statement in error is written to the SELCOPY list.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 26

Chapter 2. Program Execution Control Statement Errors

3. If possible, the offending identifier, constant or operator element within the statement text is identified by an asterisk (*)
in the SELCOPY list line immediately following the statement.

4. The relevant control statement error message is written to the SELCOPY list and, if the first error encountered, it is
also written to the log output (stderr/SYSOUT). Note that output of error messages to log output on z/OS and z/VM
platforms may be controlled by CBLNAME option SOpsMsg.
5. The control statement error count is incremented by 1.
6. SELCOPY return code 52 is set.
If the count of control statement errors reaches the maximum permitted, then control statement analysis terminates immediately
and end of job processing begins. The error count maximum is determined by the ERRLIM (or ERRMAX) option which has a
default setting of 10. Similarly, end of job processing is invoked following normal completion of control statement analysis if any
errors have been flagged.

Individual control statement errors are described in Control Statement Analysis Error Messages.

Selection Time Processing

If no statements have been flagged as being in error and all necessary file allocation/open has been performed successfully, then
selection time processing begins.

Selection time processing involves the systematic selection and execution of the SELCOPY statements which includes resolution
of current values for variables and expressions specified as parameters to operations.

By default, control statements are selected in order of ascending selection identifier. This is common in only very simple programs
that do not involve conditional operations or logic flow operations that perform a direct branch to a label statement. In most
SELCOPY programs, the default order of control statement selection is influenced by logic flow operations (e.g. GOTO, DO) and
the result of logical operations/sub-operations IF, AND, OR which govern the selection of conditional sub-operations THEN, ELSE.

Implied Loop

If a prime input exists, then, following execution of the last selected input control statement, selection processing loops to
continue its processing from the first selectable control statement. This behaviour is equivalent to that of the GOTO GET
operation. Note that the first selectable control statement may be a conditional operation subject to IF, AND, OR.

This processing continues until no further records are read from the prime input either because end of file (or result table) is
flagged or because STOPAFT parameter thresholds have been satisfied for all prime input READ operations or all output
(PRINT, LOG, WRITE) operations.

This loop processing may be controlled within the SELCOPY program using an IF/AND/OR EOF condition to test the end of
prime input and so perform additional processing before executing the EOJ operation to force end-of-job. Similarly, GOTO EOJ
may be executed on any statement to end the execution before all prime input records have been read.

Note that there is no implied loop if no prime input exists, in which case selection time processing ends after the last selected
control statement has been executed.

Selection Time Errors

Selection time errors may be flagged for individual control statements that fail to execute properly.

Selection time errors are usually errors that cannot be established by SELCOPY's control statement analysis and only occur
when an attempt to execute the statement is performed. e.g. Failure to dynamically allocate a file due to an invalid fileid having
been specified in the DSN field definition.

If an error is flagged at selection time the following occurs:

1. The relevant selection time error message lines and any accompanying dump print are immediately written to the
SELCOPY list. These message lines will appear before the diagnostics summary block.

The message is prefixed by the selection identifier number of the statement on which the error occurred. e.g.
(SEL---12) indicates the statement assigned the selection identifier number 12.

If the error occurs on an IF, AND or OR operation, then the selection identifier used is that of the first THEN
sub-operation statement that follows. Furthermore, the selection identifier is displayed with only 1 preceding hyphen
(-). e.9. (SEL -12) refers to the IF, AND or OR operation that occurs immediately before the THEN statement
assigned the selection identifier number 12.

2. The same selection time error message lines are written to the SELCOPY log output (stderr/SYSOUT). The message
is prefixed by the SELCOPY version and release. e.g. SELCOPY/WNT 3.20.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 27

Chapter 2. Program Execution Selection Time Errors

Additional messages may also have been written to the log by SELCOPY's internal functions for diagnostic purposes.

e.g. The following message, logged by internal function cblfio, provides more accurate information as to the reason for

the 1/O error:
cblfio: WinErr=0161 The specified path is invalid. (Input) F="fileid"
Note that output of error messages to log output on z/OS and z/VM platforms may be controlled by CBLNAME option
SOpsMsg.
3. Selection time processing terminates immediately and end of job processing begins.

Individual selection time errors are described in Selection Time Error Messages.

End of Job Processing

Before the SELCOPY execution terminates, the following end of job tasks are performed:
1. Free storage obtained by SELCOPY during execution.

. Free any dynamically allocated files.

. Close all input and output files and close all ODBC connections.

. For z/OS and z/VM only, drop any lists generated by READ LIST operations.

. Write the diagnostic summary block to SELCOPY list.

D 0 A~ WD

. Write any non-zero return code warning message to the SELCOPY list which may include the selection identifier of the
first statement in error.

~

. Write the standard SELCOPY report footer lines to SELCOPY list.
8. Close the SELCOPY list and SELCOPY log output.

SELCOPY List Output

By default, the SELCOPY program list output contains both diagnostic information and any text printed by the SELCOPY program
using the PRINT or PLOG operations.

The destination of the SELCOPY list output is as described by the SELCOPY command -Ist parameter in section "Invoking the
Executable".

On Windows and Unix systems, list output is of undefined record format (RECFM=U) where applicable print control characters,
carriage return (x'0D'), line feed (X'0A") and form feed (x'0C') are used to control the formatting of text output.

On z/OS and z/VM systems, list output is of record format VBA which uses standard mainframe ASA print control characters to
control the formatting of the text output. Therefore, when browsing or editing the list output generated on these systems, the first
column of the display contains the ASA characters (1, 0 or b) and does not constitute part of the SELCOPY list output text.
Likewise the list output page width, as defined by the PAGEWIDTH option, does not include the ASA column.

SELCOPY list output is organised in pages of specific page depth as defined by the PAGEDEPTH option. Each page has
configurable header lines and, if not suppressed by option NOPRINT, the last page ends with standard footer lines.

The line number within the current page of the last line written to the list is maintained by internal variable, LINE. Where the value

of LINE is equal to the current page depth value or if assigned a value lower than its current value, then the next output to the list
will start a new page and the outputted text will be written immediately following the new page's header lines.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide

28

Chapter 2. Program Execution

SELCOPY List Output

SELCOPY/WNT 3.20 at CBL - Bridgend UK (Internal Only) 2014/01/24 15:20 PAGE 1
option sortdir=n subdir=0 datawidth=80 pagewidth=110
** c:\nbj\examples\dd0l_ctl.txt *** L=002 --- 2014/01/24 15:20:00 (LO5)
*
* SELCOPY to generate a log of activity on a specific FTP server.
* 1. Read multiple syslog files whose fileids match a specified fileid mask.
* (Fileids are sorted by date descending, with sub directories excluded.)
* 2. Limit the number of input records processed to be 5,000.
* 3. At the start of each log file, write the fileid to the output file
* following a "***" marker.
* 4. Write only records that contain the specified literal strings.
1. read indd dsn="c:\hst\log\syslog\2013*.rtl1" dirdata stopaft 5000
if dir ** File directory records.
2. then write outlog dsn="c:\tmp\ftp_activity.txt" from "*** " from 60
3. then goto get * Return to top of main processing loop.
** File data records.
if pos any = "dst=172.168.1.100" * Sets @ pointer at the first match in the data.
and pos @+58 = "dst_port=21" * Test fixed offset from the @ pointer position.
and pos 1, @ = "src=" * Sets @ pointer at source IP address.
4. then write outlog
5. then print from @, @+79 stopaft 5 * Print text of interest.
INPUT SEL SEL RECORD
RECNO TOT ID. 1 2 3 4 5 6 7 8 LENGTH
77777777777 0 0 O O
59 1 5 src=95.64.37.10 srcname=95.64.37.10 src_port=80 dst=172.168.1.100 dstname=172.16 695
673 2 5 src=173.254.28.40 srcname=173.254.28.40 src_port=80 dst=172.168.1.100 dstname=17 699
183 3 5 src=95.64.37.10 srcname=95.64.37.10 src_port=80 dst=172.168.1.100 dstname=172.16 695
2825 4 5 src=161.69.13.21 srcname=161.69.13.21 src_port=443 dst=172.168.1.100 dstname=172 698
2826 5 5 src=161.69.13.21 srcname=161.69.13.21 src_port=443 dst=172.168.1.100 dstname=172 698
e o B o AP
SUMMARY. .
SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
1 5,000 READ INDD 2048 2046 U 5 C:\hst\log\syslog\2013*.rt1l
*EOF*NOT*REACHED*
2 5 WR OUTLOG 2048 713 U 13 C:\tmp\ftp_activity.txt
3 5
4 8 WR OUTLOG 2048 713 U 13 C:\tmp\ftp_activity.txt
5 5
FHAHAWARNING* * * 4 = RETURN CODE FROM SELCOPY
**% SELCOPY/WNT 3.20.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
** Expir 17 Jul 2014 **

Figure 1. Sample SELCOPY List Output.

SLCLST Environment Variable

For Windows, Unix and OS/400 operating systems, the environment variable SLCLST may be set to identify the default fileid to
which SELCOPY list output is written when no -Ist program option is specified on the SELCOPY command. Note that Unix systems,

for which names are case sensitive, must assign the variable name in upper case.

The fileid assigned to SLCLST will override the SELCOPY default, defined as being fileid "SELC.LST" in the current working
directory. Sample commands for setting environment variable SLCLST in each supported system follow:

Windows command shell

set SLCLST=c:\tmp\s.lst

Unix Bourne or Korn shells (sh, bash or ksh)

export SLCLST=/home/nbj/selc_list

Unix C shell (csh or tcsh)

setenv SLCLST /home/nbj/selcopy_list

0S/400

ADDENVVAR ENVVAR (SLCLST) VALUE ('/nbj/slst'")

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide

29

Chapter 2. Program Execution Header Lines

Header Lines

Each page of the SELCOPY List output begins with 3 header lines:

1. The header text which includes a title in addition to the current date, time and page number.
2. A line containing only hyphen/minus symbols (-) that underline text in the first header line.
3. A blank line.

The existence of these lines means that the value assigned to internal variable LINE will never be less than 3.

The header title is left adjusted within the first header line so that it occupies the first printable character. Note that ASA characters
occupy column 1 for z/OS and z/VM CMS list output. The remaining group of header line items (current date, time and page
number) are right adjusted at the column value specified by option PAGEWIDTH.

Note that the width of the page number value is 4 characters. If >9999 pages are written to the SELCOPY list output, the page
numbers of pages following page 9999 are displayed as 4 asterisks (****).

The default SELCOPY header title is as follows:
SELCOPY/xxx n.nn at site_name
Where:
e xxx is a 3 character abbreviation representing the operating system as defined by generic terms in "Documentation
Notes." e.g. SELCOPY/WNT implies SELCOPY for Windows.
e n.nnis the SELCOPY release. e.g. 3.20
e site_name is the company name and location as defined by the SITE option in the SELCNAM (SELCOPY.NAM) file. e.g.
Compute (Bridgend) Ltd - Bridgend UK

This default may be overridden during control statement analysis using the HEAD option or the HEAD parameter of the REPORT
operation. During selection time processing, the header title may be updated using internal variable, HEAD.

Note that, because lines are written to the SELCOPY list output following analysis of the first control statement, then, unless the
first statement sets the header title, then the title displayed on the first output page header will be the SELCOPY default.

If any control statement performs a TYPE=S (System) print operation, then SELCOPY list page formatting, including output of page
headers, is suspended until end of job processing is started.

Control Statements

Unless options NOPRINT or NOPCTL are set, control statements are written one at a time to the SELCOPY list output as they are
processed by control statement analysis.

If a selection identifier number has been assigned, it appears right-justified with a trailing period (.) in the first 7 characters of the
output record containing the control statement. Otherwise, the first 7 characters contain blanks. The text of the control statement
itself is indented so that it starts in column 10 of the list output record.

If desired, OPTION operation statements with keywords PRTCTL or NOPCTL may be interspersed throughout a SELCOPY
program to determine whether or not the control statements that follow the OPTION statement are included in the diagnostic
output. PRTCTL switches on control statement output, NOPCTL switches it off. By default, PRTCTL is in effect and so all
statements of the control statement input source, including comment text and blank lines, are written to the SELCOPY list.

If a control statement analysis error control statement analysis error occurs, then control statement printing is reactivated if
NOPRINT/NOPCTL is in effect and the appropriate error highlighting and message text is written immediately following the
statement in error. e.g.

2. PRINT This will give a control statement error.
* Kk ok ok

*** ERROR 042 *** I/0 LIT MUST BE IN QUOTES / FROM MISSING

The maximum number of control statement analysis errors reported in the SELCOPY list is determined by the ERRLIM option value
(default 10).

A statement that follows the statement separation character (!) is processed after the statement that occurs immediately before it.
Consequently, the separator character is removed and the statement that follows is written to a new line of the list output but further
indented so that it occurs at the same offset as it does within the input record. e.g.

read indd !print * Print input records.

The SELCOPY list output:

1. read indd
2. print * Print input records.

Statements that span more than one input record using the statement continuation character (\) occupy the same number of lines in
the SELCOPY list output. The continuation character itself is preserved in the statement list output.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 30

Chapter 2. Program Execution Control Statements

For the purpose of improved readability, additional blank lines are written to the list output. e.g. A blank line is written before each
statement containing an IF logical operation and before the statement assigned the first selection identifier, and two blank lines are
written after the last control statement processed.

Print Block

Any PRINT or PLOG operation executed during selection time processing will write text to the SELCOPY list output following the
control statement diagnostic output but before the summary block.

The type of printed output, as specified by the TYPE parameter, determines the format of the data written to the list. For all
SELCOPY print output, except TYPE=S (System), the first execution of a PRINT or PLOG operation for the current list page will
write the 3 standard print block header lines as follows:

INPUT SEL SEL RECORD
RECNO TOT ID. 1 2 3 4 5 LENGTH
0

When no further text is to be printed or before starting a new list page, the standard print block footer line is written. This comprises
a scale of length equal to the datawidth, located immediately under the printed text. This scale contains dots/periods (.) for each
character position that is not a multiple of 5, a comma (,) for character positions that are a multiple of 5 but not a multiple of 10, and
numbers 0 to 9 representing character positions at an interval of 10.

e .

Unless otherwise stated, numeric values reported in the print block which overflow the allotted column field width will be reported as
a number of asterisk symbols (*) equal to the width of the column field.

INPUT RECNO
Identifies the record or row number of the prime input at the time the print operation occurred. If the prime input has
more than one input source (i.e. READ with a CAT sub-operation or the prime input gets re-opened with a different
fileid) the record number is reset for each input source. Note that a reset does not occur where a prime input is
identified by a z/OS ddname which is allocated to a concatenation of data sets.

The INPUT RECNO column starts in record position 1, has a width of 9 characters and both the column header text
and column values are right adjusted within the column area.

SEL TOT
Identifies the execution occurrence of the print operation that generated this line of printed text. e.g. a value of 4 would
indicate the 4th execution of this particular PRINT or PLOG operation within the current program execution. A count is
maintained for each occurrence of a PRINT/PLOG selection within the SELCOPY control statements.

The SEL TOT column starts in record position 10, has a width of 6 characters and both the column header text and
column values are right adjusted within the column area.

SEL ID.
The selection identifier number assigned to the PRINT or PLOG operation that produced the line of printed output.

The SEL ID. column starts in record position 16, has a width of 4 characters and both the column header text and
column values are right adjusted within the column area.

Scale
Applicable only to print output other than TYPE=D (Dump) and TYPE=S (System), a decimal scale counting guide is
included as a header, below which the printed data is displayed for the selected PRINT or PLOG operation. The width
of the scale line dictates the length of printed text to be displayed on each line of the print block.

More than one print line may be written to represent the same length of printed text depending on the type of printed
output specified. e.g. In addition to the character text print, PRINT TYPE=B will include an extra 2 lines that display an
up-down hexadecimal representation of the printed text as well as an intervening blank line.

The scale may occupy all 3 of the print block header lines, one each for the hundreds, tens and units displayed at 10
character intervals. The third header line contains a line of dots/periods (.) for each character position that is not a
multiple of 5, a comma (,) for character positions that are a multiple of 5 but not a multiple of 10, and a zero (0) for
character positions that are a multiple of 10.

The column scale text and printed text start in record position 21. The width of this column is governed by the value
assigned by the DATAWIDTH option.

If the printed text is longer than the DATAWIDTH value, the text continues on second and subsequent print lines. Each
of these continued lines of printed text are prefixed by a value representing the offset of the text from the start of the
printed field. This value starts in record position 6, has a width of 8 characters and is of the format +nnn,nnn, where
non-significant leading zeros and commas are suppressed and the plus symbol (+) is right adjusted to the first
significant numeric. Note that, for groups of print lines that represent the same printed text (e.g. PRINT TYPE=B), the
offset value is displayed before the first print line of the group only.

For example, with OPTION DATAWIDTH=50 in effect, a printed prime input record of length 215 is displayed as:

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 31

Chapter 2. Program Execution Print Block

INPUT SEL SEL RECORD
RECNO TOT ID. 1 2 3 4 5 LENGTH
——————————————— S O 0 O O O I
9 9 7 10010005....Mrs...Patricia....... Sample........... 215
+50 ...Mrs Sample.............. KEXKKKXK XXXXXe e oo oo
+100 ... XK. XXXXXXKXK KKKttt onoenennoneenenneneenens
+150 Lo ao... FXXXXXKKKK @ o o v u KXXX. . .XXXX XXX..XXXXXX X
+200 KXXKKXK e oo ue C..
e T 1

RECORD LENGTH
Applicable only to print output other than TYPE=D (Dump) and TYPE=S (System), this column displays the length of
the last record or row read from the prime input object at the time the print operation was executed.

The RECORD LENGTH column starts in record position 21 plus the DATAWIDTH value and has a width of 7
characters. The column header text is right adjusted at one column beyond the width of the column, whereas the
column values are right adjusted within the column area width.

Display of this column may be suppressed using the PRRECLEN=NO option.

PRINT Block - TYPE=D Output

Printed text that is in TYPE=D (Dump) format also writes 3 header lines but includes only the INPUT RECNO, SEL TOT and
SEL ID. columns. (i.e. No scale or RECORD LENGTH columns.)

INPUT SEL SEL
RECNO TOT ID.

1 1 2 71
0000 2A2A2063 3A5C6E62 6A5C6361 5C4C3035 | ** c:\nbJj\ca\L05|
0010 2E636D78 202A2A2A 20202020 20202020 | .cmx *** |
0020 2020204C 3D383130 202D2D2D 20323031 | L=810 --- 201]|
0030 352F3035 2F323820 31313A35 373A3132 |5/05/28 11:57:12]
0040 2020284C 303529 | (LOS) |

2 2 2 0

3 3 2 58
0000 3C736574 70742037 3220602A 20216363 |<setpt 72 ** lcc]
0010 20636020 20202020 20202020 20202020 | ¢
0020 20207C20 53657420 706F696E 74732061 | | Set points al
0030 6E642063 6F6C6F75 722E Ind colour. |

Although no RECORD LENGTH column header is displayed, the length of the last record or row read from the prime input at
the time the print operation was executed, is displayed to the right of the SEL ID column value. The value is right-adjusted in a
column starting at record position 29 for a width of 5 characters.

The printed text is written on the lines following the statistical values and spans the entire width of the list output starting at
record position 3. The print format is the standard IBM system dump display where each printed line contains a hexadecimal
value offset from the start of the printed text, followed by the hexadecimal and character representation of the text at that offset.

Offset
The offset value is a 4 digit hexadecimal (hex) numeric value, printed so that the hex digits are displayed side-by-side
and occupying 4 characters of the print line. Therefore, an offset may be a value in the range x'0000' to x'FFFF'
(decimal 65535). For offset values above this maximum, the displayed value is truncated on the left so that high order
digits are not displayed.

Hexadecimal Display
Hexadecimal (hex) display of the printed text is such that each character is represented by 2 hex digits in the range
x'00' to X'FF' as defined by EBCDIC or ASCII character encoding standards. These hex digits are displayed
side-by-side in a dump print. i.e. Each character of printed text occupies 2 characters of printed hexadecimal
representation. For convenience, the hex display is grouped into 4 characters of printed text (8 hex digits) with a single
intervening blank.

Character Display
Character representation of the printed text follows the last character of the hexadecimal display with 5 intervening
blanks. The character display is enclosed within special characters as defined by the DUMPENC option - default
or-symbol (]).

The first line of printed text starts at offset zero (0000) with subsequent lines containing text at consecutive offsets up to the end
of the printed field.

The length of printed text displayed on each line of the TYPE=D output is always a multiple of 4 (1 fullword) and is governed by
the prevailing value for page width (option PAGEWIDTH) as detailed below.

PAGEWIDTH values Printed Text Length PAGEWIDTH values Printed Text Length
66 12 (3 fullwords) 93-105 24 (6 fullwords)
67-79 16 (4 fullwords) 106-118 28 (7 fullwords)
80-92 20 (5 fullwords) 119-156 32 (8 fullwords)

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 32

Chapter 2. Program Execution PRINT Block - TYPE=D Output

If option DUMPALL=NO is in effect, consecutive TYPE=D print lines that contain the same text, will be grouped together and
condensed so that only the first line of the group is displayed with all remaining lines in the group replaced with a single print
line. This single line contains the offset of the 2nd line in the group, the literal "=same=" followed by the number of lines
represented by this print line. The character text area of this line is all blank and enclosed by the alternate DUMPENC option
character - default colon (:).

INPUT SEL SEL
RECNO TOT ID.
0 1 11 190

0000 206C696E 65732073 75707072 65737365 | lines suppresse]
0010 642E2020 20202020 20202020 20202020 d.
0020 20202020 20202020 20202020 20202020 |
0030 =same= (7 lines) : :
00AO0 20202020 20202020 44696666 20646174 | Diff dat|
00BO 612E2020 20202020 20202020 2020 la.

Summary (Totals) Block

Unless options NOPRINT or PRTSUM=0 (synonyms NOPTOT, NOPSUM) are set, the summary of control statements execution is
written to the SELCOPY list output during end of job processing.

The summary block reports the number of times each control statement was executed as well as information on each input and
output object. The level of detail and, hence, the amount of report lines displayed in the summary block, is determined by the
PRTSUM option value (default 2).

Unless otherwise stated, numeric values reported in the summary block that overflow the allotted column field width will be reported
as a number of asterisk symbols (*) equal to the width of the column field.

The 3 standard summary block header lines are as follow:

SUMMARY. .
SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN

Starting in record position 1, SUMMARY.. occupies the first header line and identifies the start of the summary diagnostic
information block. The remaining 2 header lines identify column names below which statistical values are displayed for each
individual statement or group of statements eligible for execution during selection time processing.

Information displayed for I/O operations may occupy multiple lines of the summary block report and, depending on the PRTSUM
level, additional lines may be included for labels and operations not assigned a selection identifier number. Further lines may be
included to report SELCOPY warning messages which immediately following the statement selection report lines to which they
apply. See Summary Block Messages for detailed descriptions of these messages.

Named summary block columns SEL-ID and SELTOT contain values for all statements for which a selection identifier number has
been assigned. The remaining columns potentially contain values for I/O operations CAT, CLOSE, DELETE, INSERT, OPEN,
READ, UPDATE and WRITE only.

Summary Block Selection Statistics Columns

SEL-ID
Specifies the selection identifier number or range of selection identifier numbers corresponding to one or more
executable statements to which summary details in the current report line are applicable.

Consecutive selection identifiers are grouped together if the statements to which they are assigned have been
executed the same total number of times (see the SELTOT column). A statement identifier is excluded from this
grouping when the statement to which it is assigned contains a summary block comment (starting with compound
symbol *>) or is one of the operations: CAT, CLOSE, DELETE, INSERT, ODBC, OPEN, READ, UPDATE or WRITE.

Similarly, a group of selection identifiers will be split into smaller groups where option PRTSUM=2 is in effect and a
programmer-defined label occurs within the group, or grouping suppressed altogether when option PRTSUM=3 is in
effect.

The SEL-ID column header starts in record position 2.

The first (or only) selection identifier number is right adjusted in an area starting at record position 1 of width 5
characters. If a range of selection identifiers are represented, this number is the first identifier in the range. The second
identifier number represents the last identifier in the range and is right adjusted in an area starting at record position 6
of width 5 characters. Non-significant zeroes in the first number are replaced with blanks whereas non-significant
zeroes in the second number are replaced with hyphen (-) symbols.

SUMMARY. .

SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
1 5,319 READ INCMX 2048 211 U 5,319 C:\nbj\ca\xxx.cmx
2---13 320
14 22 Summary block comment.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 33

Chapter 2. Pr

SELTOT

opword

ogram Execution Summary Block Selection Statistics Columns

Specifies the total number of times the statement or group of statements, represented by selection identifier(s)
displayed in the SEL-ID column, have been executed in the SELCOPY run.

The SELTOT column header starts in record position 14.

The totals number is displayed with comma (,) punctuation after every 3 digits starting from the units digit and is right
adjusted in an area starting at record position 7 of width 13 characters.

This area overlaps the area occupied by the second selection identifier number in a range group of identifiers
displayed in SEL-ID. However, this has no destructive affect unless the total number of executions exceeds 9,999,999,
in which case the second identifier number in the range of selection identifiers is suppressed.

If the selection total value exceeds 2,147,483,647 (hex 7FFF,FFF), then +2.1G+ is displayed instead.

This unheaded column occupies the area between the SELTOT and FILE columns. The contents of this column are
dependent on the level of diagnostic information in effect (PRTSUM) and can potentially span all subsequent columns.

PRTSUM=1
The column starts in record position 21 and has a width of 4 characters.

It contains one of the I/O operation words (READ, CAT, WRITE, INSERT, UPDATE or DELETE) as executed
by the statement identified by the selection identifier in SEL-ID. Note that summary block comments on these
types of statement are ignored.

For all other statements or groups of statements assigned identifiers, this column contains blanks unless a
summary block comment has been specified or a summary block message has been returned. If either of
these conditions is true, the statement for which the comment or message text is to be displayed, is not
included in a statement group but is reported separately. Comment text starts at offset 1 of this column,
message text at various offsets, with text spanning all subsequent columns.

If the summary block report line contains comment text or I/O operation data, then a summary block message
is reported on a line of its own, immediately following the statement report line to which it applies.

PRTSUM=2
In addition to the content described for PRTSUM=1, this column contains the names of programmer defined
labels and any unconditional RETURN operations. For highlighting purposes, the label names are displayed
with enclosing equals (=) symbols and a preceding blank line, whereas RETURN operations displayed as
=ret=.

PRTSUM=3
The column starts in record position 21 and has a width of 10 characters.

With the exception of summary block comments, this column has the same content as for PRTSUM=1 and 2
but with the In addition to the content described for PRTSUM=1 and 2, this column contains an entry for each
run-time executable statement, regardless of whether it has been assigned a selection identifier. For each of
these statements, this column displays either the abbreviated name of the operation being executed or the
name of the internal variable or @Variable to which a value is being assigned.

Operation names, other than those I/O operations itemised in PRTSUM=1 above, and names of internal
variable/@Variable assignments may span summary block columns that follow.

Unlike PRTSUM=1 and 2, all comment text, including summary block comments, are aligned at a fixed record
position. Comment text includes the preceding asterisk (*) symbol and overlays blank entries in subsequent
columns of the same summary line. Where specified on one of the 1/0O operations, the subsequent column
entries are not blank and so the comment text is aligned at the same, fixed record position but on a new line.

Comment text on programmer-defined labels is aligned at record position 53. On all other statements,
comment text is aligned at record position 73.

Summary Block I/O Operation Columns

FILE
Identifies an up to 8 character file name assigned to the object on which the 1/0 operation is performed.
By default, the FILE column starts at record position 26, has a width of 8 characters and both the column header text
and column values are left adjusted within the column area. If PRTSUM=3 is in effect, this column starts at record
position 32.

BLKSIZE

Displays the block size used for the I/O operation. The block size defines the size of the buffer used by SELCOPY
when performing data 1/0 on the specified object, and is the maximum size of a block for file objects defined with a
blocked record format (RECFM). See LRECL column below.

For VSAM data sets processed in a z/OS or z/VM CMS environment, the reported BLKSIZE value is the maximum
record size (RECORDSIZE) value defined for the cluster data records.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 34

Chapter 2. Program Execution Summary Block I/O Operation Columns

LRECL

FSIZE

By default, the BLKSIZE column starts at record position 34, has a width of 7 characters and column values are right
adjusted within the column area. The column header text is located at record position 35. If PRTSUM=3 is in effect, the
column values start at record position 40 with header text starting at record position 41.
Displays values for the input or output object in the following order:
1. The length of the longest input or output record processed for the specified object.
This column value is numerical and starts at record position 42, has a width of 5 characters and is right
adjusted within the column value area. If PRTSUM=3 is in effect, the column value starts at record position
48.
2. The format (RECFM) of the records processed.
This column contains a character value and starts at record position 48, has a width of 3 characters and is
right adjusted within the column value area. If PRTSUM=3 is in effect, the column value starts at record
position 56.
The column header text is located at record position 44 or, if PRTSUM=3 is in effect, position 50.

The basic record formats displayed in the second column are:

F Fixed length format records.
V Variable length format records.
U Undefined length format records.

Unless a RECFM value is specified as a parameter on the SELCOPY /O operation or the RECFM value can be
established from another source (e.g. z/OS VTOC or JFCB), then the default input record format is U (undefined) and
the default output record format is the same as the prime input.

For native z/OS data sets and z/VM CMS files, the record format displayed in this column will be the RECFM defined
when the file (data set) was allocated/created. See operating system documentation for possible RECFM values and
their definitions. e.g. For z/OS, see "MVS JCL Reference".)

VSAM RRDS input/output, ODBC based input/output and SELCOPY list input are all reported as being record format F
(fixed length). All non-RRDS VSAM input/output (KSDS, RRDS, etc.) is reported as being of record format U
(undefined length).

In addition to the standard, undefined length format files that employ end-of-line characters to terminate records,
SELCOPY supports input/output of fixed and variable length (blocked and unblocked) record format files belonging to a
hierarchical file system (e.g. FAT32, NTFS, EXT4, XFS, ZFS). Furthermore, SELCOPY supports hierarchical file
system input/output of files assigned one of the following special variable length record formats. These are reported in
the second LRECL column:

V2 Variable length format records that each have a leading 2-byte (4 digit) big-endian hexadecimal
value defining the length of the record data that follows.
V3 Variable length format records that each have a leading 3-byte field comprising a flag byte followed

by a 2-byte (4 digit) big-endian hexadecimal value defining the length of the record data that follows.
Files of this format are created by FTP block mode (MODE B) transfer of zZOS RECFM VB files to
ASCII based platforms.

MFV A Micro Focus Variable length format file which has a fixed, 128-byte header followed by variable
length records that each have a leading 2-byte field comprising a flag byte followed by a 1-byte (2
digit) hexadecimal value defining the length of the record data that follows.

For z/OS VSAM and z/VM CMS VSAM data sets, FSIZE displays the number of records in the data set when it is
opened. Otherwise, FSIZE displays the number of records read from or written to a data object since that object was
opened.

In z/OS and z/VM CMS environments only, if an UPDATE, DELETE and/or INSERT has been actioned on a VSAM
data set, then each reference to that data set on an I/O operation within the summary block will be immediately
followed by additional report lines, one each for the number of updates, deletes and inserts performed. These numbers
are right adjusted in the FSIZE column and are followed by the character literal: UPD, DEL or INS.

By default, the FSIZE column starts at record position 52, has a width of 13 characters and both the column header
and column values are right adjusted within the column area. If PRTSUM=3 is in effect, the column starts at record
position 58.

The number of records value is displayed with comma (,) punctuation after every 3 digits starting from the units digit.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 35

Chapter 2. Program Execution Warning Messages

SUMMARY . .
SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
1-—-—-2 1
3 12
4 11 READ TESTK 100 71 U 11 DJH.TEST.KSDS
2 UPD
1 DEL
3 INS
*EOF*NOT*REACHED*
Cl
For VSAM data sets processed in a z/OS or z/VM CMS environment, this column displays the CISIZE (control interval
size) value defined for the data component of the VSAM cluster.
By default, the ClI column starts at record position 66, has a width of 5 characters and column values are right adjusted
within the column area. The column header text is located at record position 68. If PRTSUM=3 is in effect, the column
values start at record position 72 with header text starting at record position 74.
DSN

Displays the reference to the data object (fileid, SQL SELECT statement or SELCOPYi list command) to which the file
name Is assigned. In the case where a file name is dynamically allocated to a data object identified by a field or
declared variable name, this column will display the data object to which the file name was allocated when it was last
opened.

By default, the DSN column starts at record position 72 and has a width of 61 characters so restricting the summary
block report record to a width of 132 characters. DSN column entries that exceed 61 characters wrap so that as many
additional summary block records are written as is needed to display the full DSN entry.

Column entries are left adjusted within the column area and the column header text is located at record position 74. If
PRTSUM=3 is in effect, the column values start at record position 78 with header text starting at record position 80.

BLKSIZE LRECL FSIZE CI DSN
2048 211 U 5,321 C:\nbj\ca\L05.cmx
2048 211 U 5,321 C:\tmp\160_byte_filename_for_Gxxxx_Gxxxx_of_DDDDD_2004-12-08_

sgl1471_padlen7_Padding_Length-29-up-to-here-_ABCDEFGHIJKLMNO
POQRSTUVWXYZ---60-——abcdefghijklmnopgrstuvwxyz

Warning Messages

If selection time processing has completed with a non-zero return code, then warning messages are displayed in column 1 of the
list output, following the diagnostics summary block.

A warning message starts with the text ***WARNING***, and is followed by a reference to the selection identifier of the statement
that triggered the warning. The format is (SELnnnnn), where nnnnn is the right adjusted selection identifier number, padded on
the left with minus/hyphen symbols (-). e.g.

WARNING (SEL----5) 8 = RETURN CODE FROM SELCOPY

If the warning was triggered by a statement that is not assigned a selection identifier (i.e. an IF, AND, OR operation), then the
selection identifier of the first THEN statement that follows is reported but with a single minus/hyphen (-) preceding the number. e.g.

WARNING (SEL -42) 52 = RETURN CODE FROM SELCOPY

Footer Lines

The following 2 footer lines are displayed as standard at the end of the last page of the SELCOPY List output:

** SELCOPY/WNT n.nn.bbb yyyy/mm/dd Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
** Expiry: dd mmm yyyy **

Where:
e n.nn.bbb is the SELCOPY release and build level. e.g. 3.20.009
e yyyy/mm/dd is the ISO format date of this SELCOPY build level. e.g. 2017/10/17

e dd mmm yyyy is the date at which the active SELCOPY licence key will expire. This date is in day-of-month, abbreviated
month name and 4-digit year format.

These footer lines cannot be altered but are suppressed if option NOPRINT is in effect.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 36

Chapter 3. Data Elements and References

This chapter describes the data elements on which operations are performed within a SELCOPY program. Data elements
represent the value of a constant or a variable, or the value obtained from the contents of a field.

It also describes references to data objects and data elements as terms within an expression.

Substitution Variables

Substitution variables represent values that are established and implemented during SELCOPY control statement analysis.

These types of variables have character constant values that cannot be updated during selection time (run-time) processing. They
are used only as a mechanism for substituting a character constant value in place of its assigned variable name wherever that
name occurs within the SELCOPY control statements that follow the assignment statement.

Substitution variables may exist as environment variables, parameter variables or equated symbols.

Environment Variables

Environment variables are a set of dynamic named values that have been established by the operating environment (shell or
address space) in which the SELCOPY process is started. Environment variables (e.g. TEMP, HOME, PATH) are supported in all
Microsoft Windows, Linux, Unix and OS/400 operating systems.

In z/OS TSO, SELCOPY identifies environment variable names as being MVS system symbols. Furthermore, in z/OS and CMS
environments, variables established within a REXX procedure that invokes SELCOPY are also treated as environment variables.

SELCOPY supports reference to these environment variable names and substitution of their assigned values within its control
statements.

SELCOPY option ENVVAR/NOENVVAR determines whether this substitution is activated or not. Unless NOENVVAR is set in the
SELCNAM options file, the default action is ENVVAR (i.e. perform variable substitution.) ENVVAR and NOENVVAR options may
be specified throughout the SELCOPY control statement input to activate and deactivate environment variable substitution in the
control statements that follow.

If environment variable substitution is active, any text in the SELCOPY control statements, that is enclosed between two percent
(%) symbols, is treated as being a reference to an environment variable name and substitution is attempted. The substitution will
occur regardless of the variable name's location within a statement. e.g. within a quoted character constant.

In addition, when executing in a z/OS TSO environment, SELCOPY also interprets any text of up to 8 characters in length, prefixed
by an ampersand (&) and terminated with a dot/period (.), as being an environment variable reference. e.g. the following
statements are equivalent in z/OS TSO.

PRINT "The System Symbol, SYSNAME, has a value of '$SYSNAMES'."
PRINT "The System Symbol, SYSNAME, has a value of '&SYSNAME.'."

If SELCOPY should fail to resolve an environment variable name, then the action taken is governed by the prevailing value of
option ENVFAIL. Note: Option ENVVAR will reset ENVFAIL to its default value. (i.e. SAME)

Parameter Variables

The first 9 parameters passed to the SELCOPY program as blank delimited parm values, are used, in sequence, as values on
automatically generated EQU operations for symbols %1, %2, ... %9 respectively. The generated EQU operations are processed
before all other statements in the control statement file and are displayed as the first statements of the SELCOPY list output. No
EQU operation is generated for parameter zero (%0) which is always set to be the SELCOPY executable program name.

Thus, occurrences of a single decimal digit (0-9) prefixed by a percent (%) symbol anywhere within the control statements, will be
substituted with the equivalent numbered input parameter value. Unlike programmer-defined equated symbols, substitution will
occur regardless of the variable name's location within a statement. e.g. within a quoted character constant.

Like environment variables, the status of option ENVVAR/NOENVVAR determines whether or not substitution of parameter
variables is activated. Also, if substitution is attempted for an unspecified parameter reference (e.g. %5 when only 4 parameters
have been specified), then the action taken is governed by the prevailing value of option ENVFAIL.

Input parameter values may also be accessed via SELCOPY's internal copy of the parameter list which exists as a null terminated
character field of minimum length 80 at the named position, PARM.

Example of parameter variable usage:

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 37

Chapter 3. Data Elements and References Parameter Variables
OPTION ENVVAR ENVFAIL='#FAIL#'
IF '$1' = '#FAIL#'
THEN LOG 'Error: Missing or unexpected input parameter.'

THEN GOTO EOJ

ELSE PRINT 'First input parameter is: "S1".'

Equated Symbols

Equated symbols are programmer defined names that represent character constant values.

An equated symbol name and its equated value are defined using the EQU operation which is processed during control statement
analysis. All identifiers that match the name of an equated symbol and occur in control statements following the EQU operation on
which the symbol is defined, are substituted with the equivalent equated value. To avoid confusion, it is recommended that all EQU
operations are located at the start of control statement input.

Substitution will occur for terms within an arithmetic expression, returning a selection time error if the equated value is invalid (e.g.
non-numeric). If the equated symbol has a single leading and trailing "%" (percent) character then, like environment variables,
substitution may occur within a quoted character constant. Otherwise, substitution of equated symbols will not occur for text in a
quoted character constant or hex character constant.

The symbol name and value defined by an EQU operation is itself subject to equated symbol substitution as defined by previously
processed EQU operations. Therefore, equated values may be nested. Nesting equated symbols is a good technique to use when
establishing fields within the work area buffer. e.g.

EQU IREC 1 * Input record position.

EQU IREC_LEN 100 * Input record maximum length.

EQU OREC IREC+IREC_LEN * Output record position. (POS 1+100)
EQU OREC_LEN IREC_LEN * Output record maximum length. (100)

OPTION WORKLEN=OREC+OREC_LEN-1 * Work area length 200. (1+100+100-1) .

In the above example, all operations and variable assignments may (and should) use equated symbols when referencing fields in
the work area. If this is so then, should the job need to be adapted to handle input/output records of length greater than 100 (e.g.
LRECL 256), then the IREC_LEN equated value need only be updated and the integrity of the job is maintained.

Substitution of equated symbols occurs before a statement is parsed by SELCOPY during control statement analysis processing.
Therefore, an equated symbol name may match the name of any other identifier (SELCOPY keyword or programmer-defined
name) so substituting the identifier with the value assigned to the equated symbol. Syntax analysis is then performed on the
updated statement. e.g.

EQU PRINT PLOG * PLOG (PRINT and LOG) .
PRINT "Hello World!" * Operation keyword substituted with PLOG.
Warning:

Because substitution of SELCOPY identifier keywords will occur without restriction, the programmer must take care when choosing
equated symbol names that are also used as keywords (or keyword synonyms) within the SELCOPY control statements.

Similarly, it is possible to define an equated symbol name comprising only numeric digits or one which includes relational or
arithmetic operators (e.g. "+", "-", ">"). Doing so may adversely affect evaluation of expressions that follow and therefore should be
avoided.

Work Area or Input Buffer

Every execution of SELCOPY requires a base storage buffer in which input data may be stored and optionally manipulated, and
from which output records may be written or printed. Even if the base storage buffer is not used for these purposes, its existence is
mandatory.

SELCOPY statements reference the location of a user field definition as a positional expression which evaluates to an integer
value. This position value is a relative displacement which, when applied to the address of the base storage buffer (base address),

corresponds to the address in storage of the field. Without a base storage buffer, this fundamental principle of SELCOPY operation
would fail.

Work Area

The base storage buffer may be explicitly defined within a SELCOPY program using the WORKLEN option.

WORKLEN instructs SELCOPY to allocate an area of storage of static length as specified by the WORKLEN value and initialise its
contents using the FILL option character (default blank). This work area becomes the base storage buffer.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 38

Chapter 3. Data Elements and References Work Area

By default, execution of a READ operation will copy the next record or row of data from the input buffer into which a block of data
was read, to a position of the work area (default position 1). Similarly, execution of a WRITE operation will copy a field which
constitutes an output record, to the next output record location within the output buffer.

Note that the work area will not be used for I/O if a declared variable of type character is specified as the target (INTO) of the READ
operation or the source (FROM) of an output WRITE, PRINT, UPDATE or INSERT operation.

If the SELCOPY program has no input data object (i.e. no READ operation exists), a default work area of length 80 characters (i.e.
WORKLEN=80) is allocated.

Input Buffer

Where option WORKLEN is not specified and an input data object exists, the base storage buffer address is the address of the
record within the input buffer belonging to the last data object processed by a READ operation. The length of the base storage
buffer is the length of the last input record read.

Since the address and length of the base storage buffer changes for each execution of a READ operation, the address of a user
field definition changes accordingly. e.g. Position 1 will always be the address of the current input record. Therefore, unless
declared variables are used, reference to the position of an input record read by a previous execution of a READ operation, is no
longer possible.

Constants

A constant represents a value that does not change throughout the term of the SELCOPY program execution. Constants are
specified by stating the value, where required, within the SELCOPY statements.

Character Constants

Character data is a string of one or more bytes, each representing one of the 256 characters (x'00'to x'FF') supported by the SBCS
character set local to the operating system environment in which SELCOPY runs. For z/OS, z/VM CMS and OS/400 systems,
chsaéacter sets are based on EBCDIC encoding. For all other operating systems on which SELCOPY can run, characters sets are
ASCII based.

Character constants may be used as variable and field value assignment values, as values in logical character compare operations
(IF) and as source data on output operations (PRINT, WRITE). They may also be used to represent a bit mask following bitwise
operators MIXED, ONES, ZEROS and on logical operations AND, OR, XOR.

A character constant may be specified in one of the following formats.

Unquoted Literals

An unquoted literal is a continuous sequence of characters that does not include an apostrophe ('), quotation mark (") or one of
the blank delimiter characters. Alpha characters in unquoted literals are upper cased.

This format of character constant specification can only be used in the following:

¢ As assignment values for variables declared as being of one of the supported character data types.
¢ As assignment values for work area fields using MOD or MOVE operations.
¢ As test strings on IF, AND, OR operations.

Unless specified as an assignment value for an unformatted character field or a declared variable, an unquoted literal
comprising only numeric digits, with or without a decimal point (.), leading unary plus (+) or leading unary minus (-), is treated as
being a numeric constant.

Undesirable results may occur where an unquoted literal value is also the name of a statement identifier. e.g. A SELCOPY
keyword (or keyword synonym), a declared variable name or equated symbol. To avoid ambiguity, quoted character constants
should be used instead.

Examples of unquoted literals are:

Constant Value Length

John JOHN 4
a*b A*B 3
123c 123C 4

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 39

Chapter 3. Data Elements and References Quoted Character Constants

Quoted Character Constants

A quoted character constant is a contiguous sequence of characters enclosed in apostrophes (') or quotation marks ("). No
upper case translation is actioned on alpha characters in quoted character constants.

Apostrophes (') or quotation marks (") may be specified as text within a quoted character constant by simply using the alternate
enclosing characters. e.g. Enclose the constant in apostrophes if the constant value contains quotation marks.

Alternatively, if the enclosing character is also to be used as text within the constant, each single occurrence of that character
must be entered twice. (i.e. ' or "")

Examples of quoted character constants are:

Constant Value Length

"a*b’ a*b 3
'No! **ff———ftfp———xx! NO! **ff———ff———fpxx 18
'She said, "John".' She said, "John". 17
'O''Reilly''s car' O'Reilly's car 14
v 0

Hex Character Constants

A hex character constant is a contiguous sequence of an even number of hex digits enclosed in apostrophes (') or quotation
marks (") preceded by the letter X. Each pair of hex digits represents a single character.

The length of a hex character constant is half the number of hex digits specified. Null hex character constants (x' ') are invalid,
however, any number of punctuating commas (,) may be entered between the hex digits.

A hex constant expressed in this way may also be used to represent a hex binary integer constant. Interpretation of a hex
constant as either a character value or a numeric value depends on its usage within an assignment or operation statement.

If any of the following apply to the hex constant specification, it will be treated as a numeric value:
1. The hex constant is a term in an arithmetic expression. e.g.
1+x'20'-3 * Equivalent to: 1+32-3

2. The hex constant is preceded by keyword POS or is followed by keyword AT. i.e. it is an element of a field definition.
e.g. The following both represent a field definition of length 16 starting at position 32 of the work area buffer.

POS x'20' LEN x'10"'
x'10" AT x'20'

In all other instances, a hex constant will be interpreted as a character constant.

Examples of hex character constants are:

Constant Value (ASCII) Value (EBCDIC) [Length

X'4D616C5D" Mal] (/%) 4
x",,,,4E,4B,5C," +.% NK\ 3
x'"4CTE, 406F, 3B6F, 407A, TEGE " L~Qo;0@z~n <= ?,? 1=> 10

ASCII/EBCDIC Character Constants

By default, unquoted literals and quoted character constants are interpreted using the base code page encoding scheme used

by the local system (EBCDIC or ASCII). e.g. the constant 'A’ will be interpreted as EBCDIC X'C1' on z/OS systems, ASCII X'41'
on Microsoft Windows systems.

The encoding scheme used by SELCOPY to interpret an individual character constant may be controlled by the programmer
using keywords EsC (EBCDIC) or asc (ASCII) as a suffix to the constant specification.

Examples of specific ASCII/EBCDIC character constants are:

Constant Value Length

'a*b' ASC X'612R62" 3
'a*b' EBC X'815C82" 3
"A7az09' ASC X'415A, 617A,3039" 6
'AZaz09' EBC X'ClE9, 81A9,F0F9" 6

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 40

Chapter 3. Data Elements and References Numeric Character Constants

Numeric Character Constants

A numeric character constant is a character constant which may be interpreted by SELCOPY as a numeric constant. A numeric
character constant may be used on operations and variable assignments in place of a numeric constant. If the numeric constant

contains blank characters or "," (comma) punctuation, it must be specified as a quoted character constant.

The format of a numeric character constant and its interpretation by SELCOPY is discussed in detail under Numeric Character
Data.

Date Character Constants

Applicable only to CVDATE operation source values, a date constant represents a date value in a format specified by a TYPE
and STYLE specification.

See Date Data Types for detailed information on the types and styles of date supported by SELCOPY.

+- TYPE ———— C ——+ +- STYLE ———— I ——+
| I I |
| -—+- quoted_constant —-—t-——t+-——————————————— e tom———
I | | I I I
+- hex_constant -—---- + +- TYPE +—+- B ——+ +— STYLE ——+- A ——+
| | I | |
+= TY ——+ +- P ——+ +- B ——+
| I | I
- U ——+ +- D ——+
| |
+= J ——+
| I
+- T ——+
Parameters:
quoted_constant | hex_constant

A quoted character constant or hex character constant that specifies the source date value. The interpretation of this
date value depends on the TYPE and STYLE option attributed to it.

A character (TYPE=C) source value may contain numeric and non-numeric digits. The format of a TYPE=C source
date value and its interpretation by SELCOPY is discussed in detail under character date data type.

The format used to specify the date value may be selected so that data best suits the TYPE attribute. i.e.
quoted_constant is preferable when TYPE=C is used, hex_constant for TYPE=B, P and U.

STYLE
STYLE identifies one of the following commonly used date styles (date format).

A American standard date format. (mmddyyyy)

British (and European) standard date format. (ddmmyyyy)
Number of days since 1900/01/01.

International (ISO) standard date format. (yyyymmdd)
Julian date format. (yyyyddd)

8-byte binary time-of-day (TOD) clock as obtained via the z/Architecture STCK instruction. Any TYPE
specification is ignored for STYLE=T.

- |~ |— O |m

TYPE
TYPE specifies the source data type of the date value.

B The decimal numerical digits that constitute the date value expressed as a signed binary integer value.
e.q. 2015/08/21 (STYLE=I) is X'01337A25' (decimal 20150821).

C Character date. A character date source value may contain numeric and non-numeric digits. The format
of a TYPE=C source date value and its interpretation by SELCOPY is discussed in detail under
character date data type.

P The decimal numerical digits that constitute the date value expressed as a signed packed decimal
integer value. e.g. 2015/08/21 (STYLE-=I) is X'020150821C".

U The decimal numerical digits that constitute the date value expressed as an unsigned packed decimal
integer value. e.g. 2015/08/21 (STYLE=I) is X'20150821".

Examples:

Examples of date character constants are:

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 41

Chapter 3. Data Elements and References Date Character Constants

Constant Date Value
(FORMAT="yyyy/mm/dd")
'12/25/2012' TYPE=C STYLE=A 2012/12/25
'2003/243' TYPE=C STYLE=J 2003/08/31
'34555' TYPE=C STYLE=D 1994/08/10
X'1E8482"' TYPE=B STYLE=J 2000/01/02
X'2013,142C' TYPE=P STYLE=J 2013/05/22
X'1806,2005' TYPE=U STYLE=B 2005/06/18
X'92EE35A6,DEOQ00000"' STYLE=T 1981/11/29

Numeric Constants

Numeric constants are values that represent a quantity, length or location within SELCOPY syntax.

Numeric constants are the simplest form of arithmetic expressions used within SELCOPY syntax. Multiple numeric constants may,
of course, be used as terms within more complex arithmetic expressions.

A numeric constant may be specified in one of the following formats.

Decimal Integer Constants

A decimal integer constant is comprised of one or more contiguous decimal digits (0-9) optionally prefixed by a unary plus (+) or
minus (-) operator. Decimal integer constants must not contain comma punctuation or a decimal point. If no leading unary plus
or minus symbol is specified, unary plus is assumed by SELCOPY.

A decimal integer constant has a precision (p), where p is the total number of digits in the constant.

A decimal integer constant is treated as an unquoted literal character constant when specified as the value assigned to a field or
declared variable of data type character with no numeric interpretation.

Examples of decimal integer constants are:

Constant Precision
5 1
+132 3
-23 2
32768 5
0006 4
0 1

Zoned Decimal Integer Constants

A zoned decimal integer constant is comprised of one or more decimal digits (0-9) and ends with one of the upper case alpha
characters "C", "D" or "F". Zoned decimal integer constants must not contain comma punctuation.

If the base code page encoding scheme used by the local system is ASCII, a zoned decimal constant referenced by a
SELCOPY operation will be converted to EBCDIC before being processed.

Each digit of the zoned decimal value is represented by one byte of the EBCDIC representation of the constant value. The
right-most 4 bits of each EBCDIC byte denote a number which is the zoned decimal digit value represented as a hex code
(x'0"-x'9").

For all the EBCDIC bytes except the last, the left-most 4 bits of the byte denote the zone. The zone bits contain a fixed hex
code (x'F') so that the zone and number bits together constitute a printable EBCDIC character value corresponding to the
decimal digit. i.e. X'F0' to x'F9' is EBCDIC characters 0 to 9.

The left-most 4 bits of the last EBCDIC byte denote the value's sign. Hex codes x'C' and x'F' indicate a positive zoned decimal
value (+) and code x'D' indicates a negative value (-). Note that, although zoned decimal values can have a sign hex code in the
range x'A' to x'F', SELCOPY only supports zoned decimal values with the industry preferred sign codes: x'C', x'D' or x'F".

A zoned decimal integer constant has a precision (p), where p is the total number of digits in the constant.

A zoned decimal integer constant is treated as an unquoted literal character constant when specified as the value assigned to a
field or declared variable of data type character.

Examples of zoned decimal integer constants are:

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 42

Chapter 3. Data Elements and References

Zoned Decimal Integer Constants

Constant EBCDIC Value Precision
Representation

B x'C2! +2 1

72H x'F7F2C8"' +728 3

121 X'F1F2F1"' +121 3

0000J x"'FOFOFQFODL" -1 5

03D x'FOF3C4" +34 3

Hex Binary Integer Constants

A hex binary integer constant is a '0x' or '0X' followed by a minimum of 1 and a maximum of 8 hex digits (0-F). Regardless of
the processor architecture on which SELCOPY is running, a hex binary integer constant is interpreted as being a signed, 4-byte,
big-endian, binary value of precision 31.

When less than 8 hex digits are used, the stored value will be padded to 4-bytes using the most significant (sign) bit of the
specified hex binary integer. The exception to this is when a hex binary integer is expressed as only 1 or 2 hex digits (i.e.
1-byte), in which case the value is treated as being unsigned and the stored value is padded with zeroes.

See also Hex Character Constants for alternate specification of a hex binary integer constant value.

Examples of hex binary integer constants are:

Constant Same as Decimal Value
0x22 0x00000022 +34

0x1AD 0x000001AD +429

Ox0A3F 0x00000A3F +2623

OxXA3F OXFFFFFA3F -1473

OxF 0x0000000F +15

OXFF 0x000000FF +255

OXFFF OXFFFFFFFF -1

Decimal Fixed Point Constants

A decimal fixed point constant is comprised of one or more decimal digits (0-9) with a decimal point, optionally prefixed by a
unary plus (+) or minus (-) operator. Decimal fixed point constants must not contain comma punctuation. If no leading unary plus
or minus symbol is specified, unary plus is assumed by SELCOPY.

A decimal fixed point constant has a precision (p,s), where p is the total number of digits in the constant and s is the scale
(number of fraction digits).

A decimal fixed point constant is treated as an unquoted literal character constant when specified as the value assigned to a
field or declared variable of data type character.

If a decimal fixed point constant is used in SELCOPY syntax where only an integer value is appropriate, then the fraction digits
are ignored. e.g. when specifying a storage offset or length value.

Examples of decimal fixed point constants are:

Constant Precision
5.4 (2,1)
+2.592 (4,3)
-239.88 (5,2)
32768.43730 (10,5)
.0006 (4, 4)
0.01 (3,2)

Zoned Decimal Fixed Point Constants

A zoned decimal fixed point constant is comprised of one or more decimal digits (0-9) with an optional decimal point (.) and
ends with one of the upper case alpha characters "C", "D" or "F". Zoned decimal fixed point constants must not contain comma
punctuation.

See zoned decimal integer constants for interpretation of zoned decimal digits.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 43

Chapter 3. Data Elements and References Zoned Decimal Fixed Point Constants

A zoned decimal fixed point constant has a precision (p,s), where p is the total number of digits in the constant and s is the
scale (number of fraction digits).

A zoned decimal fixed point constant is treated as an unquoted literal character constant when specified as the value assigned
to a field or declared variable of data type character.

Examples of zoned decimal fixed point constants are:

Constant EBCDIC Value Precision
Representation

0.1A x'FO4BF1C1' +0.11 (3,2)

2.G x'F24BC7" +2.7 (2,1)

12.1 X'F1F24BF1" +12.1 (3,1)

32.1J X 'F3F24BF1D1' -32.11 (4,2)

666.666N x'F6F6FG64BFGE6EGD5 " |-666.6665 (7,4)

Variables

A variable represents a value that may change during selection time processing of the SELCOPY program execution. Contrast this
with substitution variables that are implemented during control statement analysis.

The values assigned to SELCOPY internal variables and @Variables may be updated automatically by SELCOPY when operations
are executed that relate directly to the variable. For all types of variable, the value may be updated by the programmer via a
variable assignment statement.

Variable values are referenced by coding the variable name, where required, within the SELCOPY statements.

The three types of variables supported by SELCOPY are: Declared, Internal and @Variables.

Declared Variables

Declared variables are programmer defined names that represent a variable value of specific data type.

Before it can be referenced in an operation or variable assignment, a declared variable must first be declared via one of the
following methods:

¢ Using the DECLARE operation. Because DECLARE is processed during control statement analysis, it is recommended
that all DECLARE operations are located at the start of control statement input.

¢ Automatically by SELCOPY as a result of a READ operation on a SELCOPYi list or on a database (or equivalent) object
accessed via ODBC. A variable of data type character is declared for each column of input text with a name equivalent to
the input column name.

A declared variable references a value which, as for field definition values, is determined from its address (position) in storage, its
length (precision) and its data format (data type). Any reference to the variable name in SELCOPY control statements is a
reference to that variable's current value.

Source data types supported for declared variables are documented under Data Types.

Storage Remap

By default, a declared variable references a value defined in a source field within a dynamic area of storage.

Alternatively, the address of the variable source field may exist within storage that has already been allocated (e.g. the work
area or another declared variable). This provides a means by which input data fields can be mapped to variable names, and is
the method used by SELCOPY when automatically declaring column name variables for ODBC database and SELCOPYi list
input. For variables declared via a DECLARE operation, this is achieved using the POS parameter keyword. e.g.

DECLARE IREC CHA (2506)
DECLARE ID_NUM BIN(2) POS IREC
DECLARE ID_LASTNAME CHA(20) POS IREC+002
READ INDD INTO IREC

Initial Value

A variable declared via the DECLARE operation, is assigned an initial value as specified by the INI parameter. If no INI
parameter is specified, variables of character data type are initialised with blank characters and variables of numeric data type
are initialised as zero (0). This occurs regardless of whether the variable is used to map a field in pre-allocated storage. e.qg.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 44

Chapter 3. Data Elements and References Initial Value

DECLARE E159 CHA(10) INI='ERR159'
DECLARE MAX_AGE BIN INI=65 POS IREC+53

&varname Source Field Position

The prevailing value assigned to any declared variable is stored in that variable's source field. The raw data in this field exists in
a format which corresponds to the data type assigned to the variable.

Within SELCOPY control statements, a declared variable name may be prefixed by special character ampersand (&) in order to
reference the position of that variable's source field.

Any reference to a declared variable of a character data type which does not have an associated numeric attribute (FORMAT),
is a reference to the first position of text data in that variable's source field. Therefore, for non-numeric character variables, use
of an & prefix is supported but unnecessary.

However, a reference to a declared variable of numeric data type (including a variable of character data type assigned a
numeric FORMAT) is interpreted as being a numeric value. This value is determined by the variable's source field data type and
the raw data stored within its limits. Therefore, unlike character type variables, in order to reference the source field position of a
numeric (or character numeric) declared variable as opposed to its value, the variable name must be prefixed by &. e.g.

DECLARE ABC BIN (4) INI '16,909,060" * Which is x'0102,0304"'.

PRINT ABC * Will print the value held in ABC, formatted using the default 14 byte
* FMT='SS,SSS,SSS,SS9' giving the 14 byte string: ' +16,909,060"

PRINT &ABC FMT='xxxx, ' * Will print the source field for ABC, length 4, using the hex format

* provided, giving: '0102,0304'

Note that offsets within a declared variable source field may be referenced using an arithmetic expression where the position of
the source field is the first term. e.g. &ABC+1

Internal Variables

Internal variables are variables of pre-determined name that reference values maintained in specific SELCOPY internal fields. The
field values relate to processing information and are updated by SELCOPY over the course of a program's execution.

All of SELCOPY's internal variables represent integer values and most may be referenced by name as terms within an arithmetic
expression. These variable fields are of binary integer data type and have internal storage locations that may be referenced via UX
prefixed position names.

Although maintained by SELCOPY, some internal variable values may be updated by the program via a variable assignment
statement (e.g. LRECL=80). Beware that doing so will have an effect on SELCOPY's default processing and that these values are
subject to change by SELCOPY. e.g. The LRECL value will be updated following the next execution of a READ operation.

The complete list of internal variables including the variable name, the related internal field definition and its description are detailed
in the following table. Unless otherwise stated, these internal variables may be updated via a variable assignment statement and
may be specified as terms within an arithmetic expression.

Variable Field Name Description
Name
DIFF UXADIFF Following a character compare operation that is not a range test, this variable denotes the first

position within the first character field at which a difference was found. If no difference was
found, this value is 0.

Internal field UXADIFF actually contains the storage address of the difference. This address is
equivalent to the base address (address of the work area or current record within the input
buffer) plus the value of DIFF minus 1.

INCOUNT |UXINCNT Maintained as a number of values, one for each input data object, INCOUNT references the
IN count of input records obtained as a result of a READ operation.

(Value applies
only to the prime [INCOUNT cannot be updated via direct assignment nor included as a term in an arithmetic
input.) expression. However, the INCOUNT value of a particular data object may be tested using an
arithmetic comparison operation. e.g.

IF INCOUNT INDD > 20 * Test for more 20 input records from file name INDD.

LINE UXLINE A value between 1 and the defined page depth, this variable represents the line number of the
next line to be written to the SELCOPY list output. Assigning a value that is less than the
current value will throw a new page. The assigned LINE value will not represent the next
output line number of the new page, but will immediately be updated by SELCOPY to reflect
the output line number following the page headers.

LINE cannot be included as a term in an arithmetic expression.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 45

Chapter 3. Data Elements and References Internal Variables

LRECL UXLRECL The length of the last input record obtained as a result of a READ operation. This value is
L used as the default length of a field referenced by position only. e.g.

WRITE OUTDD FROM 101 * Field starting at position 101, length LRECL.

REASCD UXREASCD Applicable to z/VM CMS only, the reason code returned by a CMS function, in addition to the
CMS return code (RETSYS).
RETCD UXRETCD SELCOPY's return code. This value contains the highest return code as set by the SELCOPY
RETCODE program or by a RETCODE variable assignment statement. A non-zero SELCOPY return
RC code will trigger a SELCOPY warning message.
RETSYS UXRETSYS The return code set by the last system command/operation executed for a SELCOPY CP,
RETCMS SYSTEM, UTIME or XV operation.
RETXV
CMSRETCD
@Variables

Originally introduced as pointers to positions in the work area or input buffer storage, @variable programmer defined names (also
known as @pointer variables) represent integer values that are stored internally as signed, binary integer fields.

By default, an @variable value is assigned automatically by SELCOPY following a character compare range test. Unless parameter
keyword PTR is specified on the IF operation, the name of this @variable is @ (i.e. symbol "@" without a name suffix.)

IF POS 11, 256 = 'Hello' * Range test.
THEN PRINT FROM @, @+11 * @ --> 'Hello World.'

Following a successful range test, the @variable is assigned a value equal to the position of the matched text within the range. This
is expressed as 1 plus the offset of the matched text from the base address (i.e. address of the work area or input record buffer). In
the above example, if the character value "Hello" is located at position 89 of the work area, then the value of @ following the range

test will be 89.

If the range test is not successful in identifying a match, a value of zero (0) is assigned and the @variable is also flagged as being
NULL. Note that, since an @variable may be assigned a zero value, the NULL flag is necessary to indicate that the @variable is
unset (IF @abc = NULL).

@Variables may also be explicitly assigned to signed integer values via a variable assignment statement, and may be specified as
terms within an arithmetic expression.

@offset = -5
MOD POS INREC+LRECL+@offset-1 = '-x#x-' * Last 5 chars of input record.

The storage address referenced by POS @ (the default @variable) is maintained by internal field UXATPTR. Any update to this
internal field will also update the value assigned to @.

Field Definitions

Field definitions may be used in individual SELCOPY operations or variable assignments to reference data in source and/or target
areas of storage.

Like declared variables, a field has location (position), length and data type attributes. Though, unlike declared variables, a
complete field definition must be specified wherever it is used and may be variable, i.e. referencing a variable position in storage or
have a variable length.

Fields may be expressed in SELCOPY command syntax using one of the following field definition types. Note, however, that not all
SELCOPY operations support the full range of field definition types. Where this is true, the supported field definition types are
identified in the description of the operation.

The position of a field, referenced by the expression expr, resolves to be an address in storage when processed by SELCOPY. The
value of expr is a positive or negative integer value that corresponds to an offset from a base storage address. This base address
is the address of the work area or, if no work area has been specified, the address of the current record within the input buffer
belonging to the prime input file. The offset applied to the base address is equal to the value of expr-1. Therefore, POS 1 is offset
zero (0) from the base address (i.e. position 1 of the work area or prime input record.)

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 46

Chapter 3. Data Elements and References Field Definitions
Field Type 1:
Field definition specified as a storage position and length (field_pLENn).

(1) + POS +

+ P ——+
\ I
|——+————— +--— expr —-—-—+- LENGTH —-+-- expr —-—————————————— | Data_Type |-———-—
+- LEN ————+
+- L —————— +
Field Type 2:

Field definition specified as start and end positions in storage (field_p1p2).
(1) + POS +
+ P ——+

\ I
[—=+————= +-—— expr —-——--——-——————————— expr ——-———————————— | Data_Type |-———-

Field Type 3:

Field definition specified as a length, starting at a storage position (field_nATp).

+ POS +
+ P ——+
I \
777777777777 expr —-—--—+- AT —-—-——-—+-—+-—--—-—+-—- expr —-----—| Data_Type |[-—-——-
+- FROM ———+
(2) +- FR ————— +

Field Type 4:

Field definition specified as a storage position with a length equal to the length of a format string (field_pFMT).

(1) + POS +
+ P ——+
\ I
| ——+————- +-—— expr ——————————————————— +- FORMAT —+-—+-- fmt_string —————- +——
+— FMT ————+ | I
+- FMAT ---+ +-- dcl_var ————————— +
| I
+-- field_plp2 —————— +
| I
(3) +-— field_nATp ——-——- +
Data_Type:
(4) + TYPE ————= C ———————————— + (5)
+ TYPE ———= P ———————————— + + STYLE ——-—-—- I ————- +
\ I \ I
—————— e T e s
I I I I
+ TYPE +-+- B ———————————— + + STYLE —-—+--— A ————— +
\ [I I I
+ TY ——+ += F —+————m—— +—+ +-——— B ————— +
| | (| I I
| + NAT —-—+ | +-—— D ————- +
| + NATIVE + | | |
| | (I - J - +
| + HEX —-——+ | | |
| + HFP ———+ | t-— T ————— +
| \ Il
| + BIN ———+ |
| + BFP ———+ |
| I
(5) +- U ———————————— +
| I
+— 7 e +

Syntax Notes:

(1) Specification of the POS keyword may be mandatory. See parameter POS for details.

(2) Restrictions exist for use of synonym FROM and FR. See parameter AT for details.

(3) Data_Type will be ignored if specified on field_p1p2 or field_nATp field definitions which represent a FORMAT string.
(4) The default data type depends on the operation. See parameter TYPE for details.

(5) STYLE and TYPE=U are applicable only to date fields used as the source or target of a CVDATE operation.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 47

Chapter 3. Data Elements and References Field Definitions

Parameters:

AT
FROM
FR

expr

FORMAT
FMT

LENGTH
LEN
L

Identifies the field definition as Type 3.

The mandatory expr expression that precedes the AT or FROM keyword defines the length of the field and the mandatory
expr that follows defines the position in storage of the first byte of the field.

Synonyms FROM and FR are invalid for the following uses of Type 3 fields:

1. As a target of an operation, following TO or INTO keyword parameters.
2. On operations where FROM is used to identify one or more source fields. e.g. MOD, MOVE, WRITE and PRINT.

e.g.
PRINT FROM 4 FROM 1 * Prints 2 source fields at POS 4 and 1.
MOVE 4 FROM 1 TO 4 AT 21 * OK.
MOVE FROM 4 AT 1 TO 4 AT 21 * OK.
MOVE FROM 4 FROM 1 TO 4 AT 21 * Invalid - ERROR 045.
MOVE 4 FROM 1 TO 4 FROM 21 * Invalid - ERROR 045. (FROM in target)

An arithmetic expression which evaluates to a positive, non-zero, integer value, expr may identify a length value or a
position within the work area/input record buffer.

expr may identify a field position outside the work area or input record buffer if it includes any of the following:

¢ A declared variable of a character data type with no numeric interpretation (i.e. no FORMAT).

¢ The source field of a declared variable of any data type, specified as &varname.

¢ A named SELCOPY internal field position. e.g. RPL

¢ An @ variable whose value is based on a named SELCOPY internal field position. e.g. @abc = DATE-2
¢ An @ variable whose value has been assigned indirectly via an update to the UXATPTR field.

For a Type 2 field, the start and end positions, represented by 2 expr values, must define an ascending sequence of
storage locations. If not, then either a control statement error (ERROR 074) or, if the relative positions are variable, return
code 8 is set.

fmt_string | dcl_var | field plp2 | field nATp

Identifies the field definition as Type 4, a character field containing a numeric value. Alternatively, it specifies the format of
printable hex on a CVCH operation.

The FORMAT string value is a template which determines the character representation of the numeric or hexadecimal
digits. Type 4 field definitions are used as the target field specification of a data conversion or modification operation
(CVxx, MOD).

The FORMAT string value is specified as a quoted character constant (fmt_string). Alternatively, if specified on the target
of a CVxC or CVCH operation, the FORMAT string value may be specified as a declared variable of character data type
(dcl_var) or a Type 2 (field_p1p2) or Type 3 (field_nATp) character (TYPE=C) field definition. Any specification of
data_type on a FORMAT string specified as field_p1p2 or field_nATp will be ignored.

See format specification parameters for information on fmt_string syntax.

Identifies the field definition as Type 1. Note that not all operations (e.g. ADD, SUB, MULT, DIV) support use of Type 1
fields.

The mandatory expr expression that follows defines the length of the field. If no AT, FORMAT, LENGTH or expris
specified following the first expr of the field definition, then the length of the field is derived as follows:

0 For a field that represents either the target or source of a MOD or MOVE operation, the default field length is
equivalent to the length of the field, constant or declared variable specified as the source or target of the
operation respectively. e.g.

MOD POS 101 = POS 1 LENGTH 20 * Target field is: POS 101 LENGTH 20
MOD POS QA+l = 'OK' * Target field is: POS @A+1 LENGTH 2
MOVE POS 1 TO CHA1 * Source field has CHAl variable length.

If length cannot be determined from either of the target or source fields, then a control statement error (ERROR
069) is returned.

¢ For READ and UPDATE operations, specification of length on the input (INTO) target field or update (FROM)
source field is invalid. The length of the field is the length of the record read from the nominated input data object.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 48

Chapter 3. Data Elements and References Field Definitions

¢ For WRITE, INSERT, PRINT and PUNCH operations, the length of the output (FROM) field defaults to be the
current value of the internal variable LRECL. However, if the output data object is of a fixed length, the length of
the output field defaults to be the length assigned to the data object.

¢ For CVCH and CVHC operations, specification of length on the target (TO) field is ignored. The length of the field
is either double (CVCH) or half (CVHC) the length of the source field.

¢ For all other operations where a Type 2 fields are supported, a length specification is mandatory and so a control
statement error (ERROR 069) is returned.

POS
P
Identifies the field definition as either Type 1, Type 2 or Type 4.
The mandatory expr expression that follows defines the location of the first byte of the field. If expr is followed by another
expr, then a Type 2 field definition is assumed where the second expr defines the position in storage of the last byte of the
field.
Specification of POS is mandatory in the following cases:
1. The field is the target of a MOD operation for which the optional MOD operation keyword has not been specified.
e.g.
POS 51 = 'ABC' * Equivalent to: MOD POS 51 LENGTH 3 = 'ABC'
2. The field is one of the terms in an IF, OR, AND compare operation. e.g.
IF POS 1 = POS 22, 27 * Equivalent to: IF POS 1 LENGTH 6 = POS 22, 27
3. The field position, expr references a numeric declared variable as the starting position within the work area from
which the remaining terms of the expression define an offset. Alternatively, if expr references a starting position
in the work area as a numeric integer constant from which a numeric declared variable defines an offset. e.g.
DECLARE Bl BIN INI= 5 * Declared binary variable, Bl = 5.
QOFF = 8 * @variable, @OFF = 8.
MOD POS B1+Q@OFF = 'OK' * Equivalent to: MOD POS 13 LENGTH 2 = 'OK'
MOD POS 5+B1 = 'X' * Equivalent to: MOD POS 10 LENGTH 1 = 'X'
IF POS Bl = '123" * Equivalent to: IF POS 5 LENGTH 3 = '123"'
STYLE
Applicable only on field definitions specified as the source or target of a CVDATE operation, STYLE identifies the style of
date. A date field may be of binary, character, signed or unsigned packed decimal data type. See TYPE=B, C, U and P.
A American standard date format. (mmddyyyy)
B British (and European) standard date format. (ddmmyyyy)
D Number of days since 1900/01/01.
I International (ISO) standard date format. (yyyymmdd)
J Julian date format. (yyyyddd)
T 8-byte binary time-of-day (TOD) clock as obtained via the z/Architecture STCK instruction. Any TYPE
specification is ignored for STYLE=T.
See Date Data Types for detailed information on the styles of date supported by SELCOPY.
TYPE
TY

Applicable only on Type 1, Type 2 and Type 3 field definitions, TYPE specifies the data type of the field. If specified on a
Type 4 field definition, the TYPE parameter is ignored.

B Hexadecimal data representing a signed binary integer value.

C Character data. If a field defined as TYPE=C is used as the destination of a binary, packed decimal or
floating point value conversion, then TYPE=C is equivalent to TYPE=Z.

F Hexadecimal data representing a floating point value. TYPE=F sub-parameters define the format of the
floating point data with the default defined by environment option DEFAULTFP.

BIN | BFP IEEE-754 Base 2 Binary.
HEX | HFP IBM Base 16 Hexadecimal.
NATIVE | NAT Floating point format native to the local machine architecture.

P Hexadecimal data representing a signed packed decimal integer value.

U Applicable only to date fields identified in a CVDATE operation, TYPE=U identifies hexadecimal data
representing an unsigned packed decimal date value.

Z Character data representing a zoned decimal integer value.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 49

Chapter 3. Data Elements and References Internal Field Definitions
Default field data type is determined as follows:

1. For data type conversion operations (CVxx/CVDATE), the data type of the source and target fields are implied by
the operation keyword. e.g. CVBC treats the source field as TYPE=B and the target field as TYPE=C.

2. For arithmetic operations (ADD, SUB, MULT, DIV), the data type is the same as the first operand in the operation
for which a data type is defined. This may be a field with a TYPE specification or a declared variable. If none of
the operands have an associated data type, then TYPE=P is default. e.g.

ADD 4 AT 1 TO 4 AT 21 TYPE=B INTO 4 AT 101 TYPE=Z * Default TYPE=B.
3. For the GENERATE operation, TYPE=P is default.
4. For all other operations, TYPE=C is default.
See Data Types for detailed information on the data types supported by SELCOPY.

Notes:

1. Return Code 8:
Any SELCOPY operation performed on a field which is located at a position within the work area or input record buffer, will
give a return code of 8 if the field occupies a position that falls outside the allocated work area buffer.

2. Equated symbols:
Equated symbols may be used to represent any of these field definition types or any syntax element which constitutes part
of the field definition (e.g. expr). However, the equated symbol is still bounded by any restrictions imposed on the field
definition type it represents. e.g. The following gives an error because an implied MOD operation is invalid for Type 3 field

definitions.
equ fldtyl pos 1 1len 4 type=p * Type 1 field definition.
equ fldty3 4 at 1 type=p * Type 3 field definition.
fldtyl = 23 * OK.
fldty3 = 23 * Returns ERROR 042.

Internal Field Definitions

SELCOPY supports a number of internal field definitions that may be used in individual SELCOPY operations or variable
assignments.

These fields have named positions and are maintained by SELCOPY and may alter over the course of a SELCOPY program. The
positional name, length and data type of each internal field follows:

ARG

POS ARG is the position of a null terminated character string field of minimum length 80, which contains the complete program
parameter (argument) string as received by the SELCOPY executable. This includes any parameter strings, command line
control statements, control statement input file and/or report file output file specification on the SELCOPY invocation.

If the length of the argument string is less than 80, the string is padded with blanks up to 80 characters and the null terminator
(x'00") immediately follows the 80th character. If the length is longer than 80, the null terminator occurs immediately following
the last character of the argument string.
In the following invocation of SELCOPY...

SELCOPY 'Parm 1' 'Parameter2' -ctl /home/xuser/ssparm0l -1st /tmp/ssparm0Ol.lst
...the contents of the field at POS ARG are:

'Parm 1' 'Parameter2' -ctl /home/xuser/ssparm0l -lst /tmp/ssparm0l.lst

See also internal field PARM for input parameter strings only.

CBLNAME

Only applicable to SELCOPY in z/OS and z/VM CMS environments, POS CBLNAME is the position in storage of the loaded
CBLNAME options module.

The CBLNAME options module is a structure containing a number of fields of different length and data type. The CBLNAME
structure includes one or more variable length extensions, one for each licensed product element (SELCOPY, SELCOPYi and
CBLVCAT). The format of option flags and fields in this structure, may be derived from the CBLNAME assembly listing which
generates a CBLNAME DSECT from the CBLNAME Assembler macro.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 50

Chapter 3. Data Elements and References

CBLNAME

The CBLNAME structure fields may be used for reference purposes only. Updates to flags bits or field data within the structure
will have no affect on the current (or any subsequent) execution of SELCOPY.

DATE

POS DATE is the position of the 8 character, ISO date format field within SELCOPY's DATE control block structure (yy/mm/dd).

The position, expressed as an offset from position DATE, length and data type of fields in the DATE control block structure are

as follow:
Position [Length|Type Example Description
DATE-36 4 |Binary x'559B,9F6B' |Number of seconds since 1970/01/01 00:00:00
DATE-32 4 |Binary x'0000,03B9' |[Number of milli-seconds (1/1000 second) after the second.
DATE-28 4|Packed [x'2015,188F' |Julian Date - x' yyyY, DDDF ' (where "YYYY"and "DDD" are the "year" and "day
Decimal of year" number respectively)
DATE-24 4 |Unsigned |x'0104,4110" |Time of Day - X' 0hhm, msst' (where "hh", "mm", "ss"and "t"are "hours",
Packed "minutes"”, "seconds" and "tenths of second" respectively)
Decimal
DATE-20 8|Character|'07/07/15' USA Date - 'MM/DD/ YY" (where "MM", "DD"and "YY" are "month of year", "day
of month" and "year of century" number respectively)
DATE-12 1|Character|""' Filler - blank character.
DATE-11 8|Character|'07/07/15' European Date - 'bb/MM/ YY' (where "DD", "MM", and "YY" are "day of month",
"month of year" and "year of century" number respectively)
DATE-03 1 |Character|"' Filler - blank character.
DATE-02 2 |Character|'20' Century - 'cc' (where "CC"is "century" number)
DATE+00 8|Character |'15/07/07" ISO Date - ' yy/mm/DD' (where "YY", "MM"and "DD" are "year of century",
"month of year", "day of month" number respectively)
DATE+08 1 |Character|"' Filler - blank character.
DATE+09 10 |Character|'10:44:11.9' |Time of Day - ' hh:mm:ss.t' (where "hh", "mm", "ss"and "t"are "hours",
"minutes"”, "seconds" and "tenths of second" respectively)
DATE+19 1|Character|""' Filler - blank character.
DATE+20 9[Character | Tuesday ' |Day of Week - 'weekday' (where "Weekday"is the blank padded day name in
mixed case)
DATE+29 1|Character|""' Filler - blank character.
DATE+30 4 |Character|' 7th’ Day of Month - "'nnst ', "'nnnd', 'nnrd' or 'nnth' (where "nn"is the "day of
month" number)
DATE+34 1|Character|""' Filler - blank character.
DATE+35 9|Character|'July ' Month of Year - 'Month' (where "Month"is the blank padded month name in
mixed case)
DATE+44 1 [Character|"’ Filler - blank character.
DATE+45 8|Character|'2015/188' Julian Date - ' yyyy/DDD' (where "YYYY"and "DDD" are the "year" and "day of
year" number respectively)
DATE+53 1|Character|"' Filler - blank character.
DATE+54 5|Character |'Wk:27" Week of Year - 'wk: ww' (where "ww"is 00-52, the "week of year" number)
Sunday is day 1 of the week. If 1st January falls on Thursday, Friday or Saturday
(day 5, 6 or 7), the first week of the year is week 0 (Wk:00), otherwise it is week 1
(Wk:1).
DATE+59 1 |Character|"' Filler - blank character.
DATE+60 4 |Binary x'0000,A4CF' |Number of days since 1st Jan 1900.
DATE+64 4 |Binary x'0000,96FB' |Number of seconds since midnight (00:00:00).
DATE+68 4 |Binary x'000E,8AA8' [Number of micro-seconds (1/1000000 second) after the second.
DATE+72 4 |Binary x'0000,03E8' |Elapsed milli-seconds (1/1000 second) since the start of the program.
DSN

POS DSN is the position of a fixed length 255 character field containing the name of the last input or output data object
processed by SELCOPY during selection time processing.

For input and output files (data sets), this is a full fileid (DSN) of the file processed. i.e. For hierarchical file systems, it is the
complete fileid reference including disk letter (where applicable) and directory path. For native z/OS data sets, it is the DSN with
TSO or Security Manager (ACF) userid prefix and parenthesised member name if applicable. For native z/VM CMS files, it is

2021/11/01 16:52:05

SELCOPY C++ (SLC) Language Reference and User Guide

51

Chapter 3. Data Elements and References DSN
the filename, filetype and filemode with single intervening blank characters.

For SELCOPY 1/O operations that perform dynamic allocation, the DSN field contains the fileid as specified on the DSN
parameter of the READ or WRITE operation. For SELCOPYi list or ODBC database input, the DSN field contains the
SELCOPYi list command, SQL query (SELECT) statement or database table name as specified on the READ operation LIST,
SQL or TABLE parameters respectively.

Dynamic Allocation
The DSN field value for a particular data object is established when the object is opened. Therefore, when the
argument on a DSN, LIST, SQL or TABLE parameter is a field definition, then an update to this field and subsequent
re-open of the associated file name (fname) reference, will also update the contents of the DSN field.

DIR/DIRDATA Input
The DSN field does not reflect the full fileid of data objects read with the DIR or DIRDATA parameter. For DIR or
DIRDATA input of z/OS PDS or PDSE members, the DSN field contains the DSN of the PDS/PDSE library only. For
DIR or DIRDATA input of z/VM CMS or hierarchical file system files, the DSN field contains the generic fileid with
wildcards, as specified on READ statement.

The PDS/PDSE member name, CMS file name or hierarchical file system fileid being processed at any time during
selection processing, may be established via the directory input record. For DIRDATA input, the data object's directory
record (as opposed to one of its data records) may be identified using an IF DIR test executed following a READ
DIRDATA operation on the associated fname.

Concatenation
The CAT sub-operation may be specified following a READ operation to concatenate input data objects. Following
concatenated data object input, the contents of the DSN field are updated to reflect the fileid (DSN), SELCOPYi list
command, ODBC SQL query statement or database table name of the particular data object from which the record
was read.

FHDR

POS FHDR refers to the position of one of the following:

1. A field containing the table column headers of the last input database result table read using ODBC or the last
SELCOPYi list input object. The specified (or default) separator character is used to separate each column name in
this FHDR field. The field is of variable length equal to the LRECL of input data.

Immediately following the generated column headers field is a field of equal length which contains the underlining for
the headers field. This comprises minus signs, except for the separator characters which match those in the header
field.

2. Afixed length 128 character field containing the file header record of the last Micro Focus variable length format file
(RECFM=MFV) processed by SELCOPY.

Processing of Micro Focus variable length format files will automatically bypass this header record on input and
automatically generate a header record on output.

FNAME

POS FNAME is the position of a fixed length 8 character field containing the file name (fname) assigned to the last data object
processed by SELCOPY.

Concatenation
The CAT sub-operation may be specified following a READ operation to concatenate input data objects. Following
concatenated data object input, the contents of the FNAME field are updated to reflect the file name associated with
the particular data object from which the record was read.

FSIZE

POS FSIZE is the position of a 4-byte binary field containing the size of the last file processed for input or output.

For files belonging to a hierarchical file system, the file size is equal to the number of bytes in the file at the time it was opened.
For all other types of data object, the file size value is zero (0).

HEAD

POS HEAD is the position of a fixed length 156 character field containing the text of the first header line displayed at the top of
each page in the SELCOPY list output. HEAD+160 is the position of the fixed length 156 character field containing the hyphen
(-) underline characters of the second header line. Each hyphen (-) is at an offset of 160 characters from the character under
which it appears in the report output.

The default HEAD field title text identifies the SELCOPY product version and licensed entity details and is followed by the

execution timestamp and page number. However, the header text and corresponding underline output may be initialised via the
HEAD environment option and later changed during selection time processing via updates to the HEAD field.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 52

Chapter 3. Data Elements and References PARM
PARM

POS PARM is the field position of a null terminated character string of minimum length 80, which contains only the parameter
string as received by the SELCOPY executable.

The parameter string comprises one or more character constants that each generates a parameter variable equate in the
executing SELCOPY program.

If the length of the parameter string is less than 80, the string is padded with blanks up to 80 characters and the null terminator
(x'00") immediately follows the 80th character. If the string is longer than 80, the null terminator occurs immediately following the
last character of the parameter string.

In the following invocation of SELCOPY...

SELCOPY 'Parm 1' 'Parameter2' -ctl /home/xuser/ssparm0l -1lst /tmp/ssparm0l.lst

...the contents of the field at POS PARM are:

'Parm 1' 'Parameter2' <59 trailing blanks follow>

See also internal field ARG which contains not only the parameter string but also any command line control statements, control
statement input file and report output file specification that occurs on the SELCOPY invocation.

RBA

POS RBA is the position of a 4-byte binary field containing the junior 4 bytes of an 8-byte relative byte address (RBA), i.e.
RBA-4 is the position of the full 8-byte binary field. Note that, an RBA is the offset of a particular record from the start of the file
to which it belongs.

The RBA field will contain the offset of a record belonging to the last file processed by SELCOPY. For input files, the RBA will
be that of the last record read. For output files, the RBA will be that of the next output record to be written, not the last record
written.

For file sizes in excess of 4G, the senior 4 bytes of the RBA at position RBA-4 will be non-zero.

On input, the RBA field may be used to save the current record's RBA before proceeding to read further records form the same
input file. The saved RBA may be used later to re-read the record directly using a READ by RBA operation.

SCALE

POS SCALE is the position of a character field of fixed length equal to the value of the DATAWIDTH option. The SCALE field
contains the scale used in the footer line displayed below printed text in the print block of the SELCOPY list output.

UXADIFF

POS UXADIFF is the position of a binary field containing a storage address of the position referenced by internal variable, DIFF
(i.e POS DIFF). If DIFF is unset (DIFF = NULL), the UXADIFF field contains zeros (0). UXADIFF is an 8-byte field for 64-bit
SELCOPY, otherwise it is a 4-byte field.

The value assigned to DIFF and the UXADIFF field are both set automatically following execution of an IF character compare
operation on a single field location. Furthermore, any direct assignment of variable, DIFF, will also update the contents of the
UXADIFF field. Note that DIFF and UXADIFF are unchanged for a character compare operation on multiple field locations (i.e.
an IF range test).

If no differences are found in a character compare operation on a single field location, the DIFF value and UXADIFF field are
both unset, i.e. NULL and reset to zero (0). Otherwise, they reference the position of the first unmatched character within the
first field (or character variable) element of the compare operation.

The POS DIFF address in the UXADIFF field is in big endian format, regardless of the underlying processor architecture on
which SELCOPY is running. It is equivalent to the base address plus the value of DIFF minus 1.

UXATPTR

POS UXATPTR is the position of a binary field containing a storage address of the position referenced by the default @variable,
@ (i.e. POS @). If @ is unset (@ = NULL), the UXATPTR field contains zeros (0). UXATPTR is an 8-byte field for 64-bit
SELCOPY, otherwise it is a 4-byte field.

The value assigned to @ and the UXATPTR field are both set automatically following execution of an IF character compare
operation on multiple field locations (i.e. an IF range test), where no PTR (or PTR=@) has been specified. Furthermore, any
direct assignment of @variable, @, will also update the contents of the UXATPTR field.

The UXATPTR address field may also be updated directly with a 4-byte, big endian format storage address in order to point
POS @ at that location. An advanced use of this feature would be to chain through z/OS system control blocks (see "IBM z/OS
MVS Data Areas" manuals) in order to obtain information about the environment in which SELCOPY is executing. e.g. The
following will obtain the RACF userid assigned to the current task:

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 53

Chapter 3. Data Elements and References UXATPTR

pos uxatptr = x'0000,0010' !print from @ ty=d 1=016 * @-> Address of CVT.
pos uxatptr = 4 at @ !'print from @ ty=d 1=016 * @-> CVT.

pos uxatptr = 4 at @ !print from @ ty=d 1=016 * @-> TCB Ptrs.

pos uxatptr = 4 at @+012 'print from @ ty=d 1=112 * @-> ASCB.

pos uxatptr = 4 at @+108 'print from @ ty=d 1=208 * @-> ASXB.

print from @+192 1=8 * ASXBUSER.

pos uxatptr = 4 at @+200 !'print from @ ty=d 1=032 * @-> ACEE.

print from @+021 1=8 * RACF userid. * ACEEUSRI.

If no matches are found by a character compare range test operation with no PTR parameter or with PTR=@ specified, the @
value and UXATPTR field are both unset, i.e. NULL and reset to zero (0). Otherwise, they reference the position of the first
character of the first matching field within the range of fields tested.

The POS @ address in the UXATPTR field is in big endian format, regardless of the underlying processor architecture on which
SELCOPY is running. It is equivalent to the base address plus the value of @ minus 1.

UXbpw

POS UXDW is the position of a 4-byte binary field containing the print output data width value as defined by the DATAWIDTH
option.

Note that data width is established during control statement analysis and cannot be updated during selection time processing.
i.e. The data width value is not changed by an update to the UXDW field value.

UXINCNT

POS UXINCNT is the position of a binary field containing the count of records read from the prime input data object. UXINCNT
is an 8-byte field for 64-bit SELCOPY, otherwise it is a 4-byte field.

The UXINCNT field value is equal to the value of internal variable, INCOUNT for the prime input data object. Note that
INCOUNT values are maintained by SELCOPY and cannot be updated by a variable assignment statement. Similarly, the
INCOUNT value for the prime input data object is not changed by an update to the UXINCNT field value.

For READ DIRDATA input, a separate count is maintained for input records of type directory and data. If the prime input data
object is read with DIRDATA, then both the INCOUNT variable and UXINCNT field values reflect the record count of the type of
record (directory or data) last read from the prime input data object.

If prime input comprises a number of data objects, read using the DIRDATA option and/or concatenated using the CAT
sub-operation, then UXINCNT is reset to 1 following input of the first data record from each of the data objects.

Synonym: UXINCOUNT

UXLINE

POS UXLINE is the position of a 4-byte binary field containing the line number of the next record to be written to the SELCOPY
list output. The line number value is the line number within the current page of output.

The maximum number of lines in each page of list output is defined by the PAGEDEPTH option and may be interrogated at
selection time using the UXPD field. The number of lines remaining in the current page of output may be obtained from the
UXLINEREM field.

The UXLINE field value is equal to the value of internal variable, LINE. The value of LINE may be updated via a variable
assignment statement during selection time processing. Doing this will also update the UXLINE field value and the next
SELCOPY list output record will either insert blank lines so that the record is written at the new line number, or throw a new
page so that the record is written on the first available line following the page header lines. Note, however, that the LINE value
is not changed by an update to the UXLINE field value.

UXLINEREM

POS UXLINEREM is the position of a 4-byte binary field containing the number of lines remaining in the current page of the
SELCOPY list output.

The maximum number of lines in each page of list output is defined by the PAGEDEPTH option and may be interrogated at
selection time using the UXPD field. The page line number of the next record to be written to the list output may be obtained
from the UXLINE field.
Note that page depth is established during control statement analysis and cannot be updated during selection time processing.
i.e. The page depth value is not changed by an update to the UXLINEREM field value.

UXLRECL

POS UXLRECL is the position of a binary field containing the value of the internal variable, LRECL. UXLRECL is an 8-byte field
for 64-bit SELCOPY, otherwise it is a 4-byte field.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 54

Chapter 3. Data Elements and References UXLRECL

The value assigned to LRECL and the UXLRECL field are both set automatically to be the length of the last input record read
via the READ operation. Furthermore, any direct assignment of variable LRECL will also update the contents of the UXLRECL
field. Note, however, that the LRECL value is not changed by an update to the UXLRECL field value.

UXPD

POS UXPD is the position of a 4-byte binary field containing the maximum number of lines in each page (page depth) of the
SELCOPY list output, as defined by the PAGEDEPTH option.

Note that page depth is established during control statement analysis and cannot be updated during selection time processing.
i.e. The page depth value is not changed by an update to the UXPD field value.

UXPGNO
POS UXPGNO is the position of a 4-byte packed decimal field containing the current page number of the SELCOPY list output.

UXPW

POS UXPW is the position of a 4-byte binary field containing the page width value as defined by the PAGEWIDTH option. The
page width is applied to header lines written to the SELCOPY list output and also governs the width of PRINT TYPE=D output.

Note that page width is established during control statement analysis and cannot be updated during selection time processing.
i.e. The page width value is not changed by an update to the UXPW field value.

UXREASCD

Applicable only to z/VM CMS, POS UXREASCD is the position of a 4-byte binary field containing the value of the internal
variable, REASCD, the reason code returned by a CMS function. See also UXRETSYS which contains the return code returned
by a CMS function.

The value assigned to REASCD and the UXREASCD field are both set automatically following execution of a CMS function.
e.g. The UTIME operation involves execution of a CMS function that sets the value assigned to REASCD and the UXREASCD
field. Any direct assignment of variable REASCD will also update the contents of the UXREASCD field, however, the REASCD
value is not changed by an update to the UXREASCD field value.

UXREPLYL

POS UXREPLYL is the position of a 4-byte binary field containing the length of text entered by the user following the last
execution of a LOG operation with parameter REPLY.

For any particular LOG operation on which REPLY is specified, the value in the UXREPLYL field may not exceed the length of
the REPLY field.

UXRETCD

POS UXRETCD is the position of a 4-byte binary field containing the value of the internal variable RETCD, SELCOPY's current
return code. By default, the current SELCOPY return code is the highest return code value set by SELCOPY at any particular
time during the program execution.

The value assigned to RETCD and the UXRETCD field are both set automatically by SELCOPY if a return code condition is
triggered and the return code value exceeds the highest value set so far during the program execution.

Any direct assignment of variable RETCD will also update the contents of the UXRETCD field, however, the RETCD value is
not changed by an update to the UXRETCD field value. Note that the return code may be updated to be any value as a result of
a direct assignment on variable RETCD, regardless of whether it exceeds the current return code value.

UXRETSYS

POS UXRETSYS is the position of a 4-byte binary field containing the value of the internal variable RETSYS. This is the last
return code set by the system following a command or function initiated by SELCOPY during the course of the program
execution. This includes commands executed via the CP and SYSTEM operations and system functions performed by the
UTIME and XV operations.

The value assigned to RETSYS and the UXRETSYS field are both set automatically following execution of a system command

or function. Any direct assignment of variable RETSYS will also update the contents of the UXRETSYS field, however, the
RETSYS value is not changed by an update to the UXRETSYS field value.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 55

Chapter 3. Data Elements and References VOLID
VOLID

POS VOLID is the position of a fixed length 32 character field which, for Microsoft Windows contains the volume label of the
disk to which the last file processed by SELCOPY belongs. On iSeries, Linux and Unix operating systems, this field contains the
host name (node name) of the system on which SELCOPY is running.

The volume label or host name value is either truncated at 32 characters or padded with blanks. SELCOPY return Code 8 is set
(see RETCD and UXRETCD) if the VOLID field is referenced by an operation and the last file processed is not a local or
networked disk file. e.g. READ STDIN and WRITE STDOUT.

Data Types

Constants, variables and field definitions are data elements that have an explicit or implied data type. For all constants, variables
and fields, the data type is the format in which the assigned value is held in storage.

See Internal Field Definitions for the data types of SELCOPY's internal fields.

Data types may be split into 3 categories: Character, Date and Numeric.

Character Data Types

Character data types are interpreted as printable ASCII or EBCDIC character text.

By default, character text is interpreted as being in the encoding format (ASCII or EBCDIC) as defined by the machine architecture
on which SELCOPY executes. Where applicable, this may be overridden on individual SELCOPY operations using keyword
identifiers ASC (ASCII) or EBC (EBCDIC) as appropriate.

Character constants, variables and field definitions may be referenced within a character compare operation and also support
position offsets within the assigned character text value.

The character data types recognised and supported by SELCOPY and the data elements to which they apply, are discussed below.

Character Fixed Length

A text string value of fixed length.

Constants:
Character constants are all of fixed length and their specification is discussed earlier in this chapter.

Variables:
Declared variables of this data type are declared using keyword identifier CHAR, with optional length value enclosed in
parentheses delimiter characters. e.qg.

DECLARE POSTCODE CHAR(10) * Character fixed length 10.

Fields:
A field is at a position and length defined by the field definition syntax specified on the operations in which it is
referenced. The field definition syntax includes data type specification, TYPE=C, to indicate character data type. For
MOVE, MOD and IF character compare operations, TYPE=C is default. e.qg.

MOD POS 11 LENGTH 5 TYPE=C = 1 FILL="1" * Value: 11111
ADD 12345 TO 5 AT 11 TYPE=C * Becomes: 23456

Character Variable Length

A text string value of variable length.

The source field for this data type has a length equal to the maximum defined length and a 2-byte binary field prefix containing
only the length of the value text. Residual text occupying the area of the source field beyond the current value's length, is
unchanged.

Variables:

Only declared variables may be defined with this data type. These may be declared using keyword identifier VARCHAR, with an
optional maximum length value enclosed in parentheses delimiter characters. e.g.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 56

Chapter 3. Data Elements and References Character Variable Length

DECLARE TITLE VARCHAR (64) * Character variable, max length 64.
DECLARE VVAR VCH (100) INI 'XY'

PRINT 'VVAR is:——>' VVAR '<--' * Gives: "VVAR is:——>XY<--"

VVAR = 'ABCDEF'

PRINT '"VVAR is:—->' VVAR '<--' * Gives: "VVAR is:-->ABCDEF<--"

Character Varying Length

Character varying length data type is identical to the character variable length data type except that each character of residual

text occupying the area of the source field beyond the current value's length, is replaced with the prevailing pad character
(OPTION FILL). The default pad character is blank.

This data type matches the PL/1 definition of data items declared with the CHARACTER VARYING attribute. Data written by

PL/1 based on this data type will have the 2-byte binary prefix followed by the character field of maximum text length.

Variables:

Only declared variables may be defined with this data type. These may be declared using keyword identifier CHARVARYING,

with an optional maximum length value enclosed in parentheses delimiter characters. e.g.

DECLARE VNAME CHARVARING (32) * Character variable, max length 32.

Character Variable Null Terminated

A text string value of variable length terminated by the null character (x'00').

The source field for this data type has a length equal to the maximum defined length plus 1 for the null terminator. This data

type matches the PL/1 definition of data items declared with the CHARACTER VARYINGZ attribute.
Variables:

Only declared variables may be defined with this data type. These may be declared using keyword identifier NTS, with an
optional maximum length value enclosed in parentheses delimiter characters. e.g.

DECLARE STRCHR NTS (100) * Character null terminated max length 100.

Date Data Types

Date data types identify data interpreted as a chronological date and are currently supported by the CVDATE operation only.

Date constants may be specified as a CVDATE source value only, whereas date field definitions are valid as either the source or

target of the CVDATE operation.

Date data types are not supported natively for declared variables. However, a variable of source data type character, binary or
decimal (scale=0) may be used with a STYLE or FORMAT specification in place of a field definition of TYPE=C, TYPE=B or
TYPE=P respectively.

Each of the date data types supported by SELCOPY, may be used to represent the different supported styles of date format.
Specifically, these are:

STYLE Option Date Format Digits
A American (USA) mmddccyy or mmddyy (1)
B British/European ddmmccyy or ddmmyy (1)
D Number of days starting 1900/01/01 +n or -n
| International Standard (ISO) ccyymmdd or yymmdd (1)
J Julian ccyyddd or yyddd (1)
T z/Architecture TOD clock X' XXXX, XXKK, XXXX, XKXXX '
Legend:

cc 2-digit century number.

yy 2-digit year of century number.

mm 2-digit month of year number.

dd 2-digit day of month number.

ddd 3-digit day of year number.
n decimal integer value.
X hexadecimal digit.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide

57

Chapter 3. Data Elements and References Date Data Types
Notes:

1. 1SO, American, European and Julian format dates support source date values with or without a 2-digit century. However,
CVDATE output of any of these date formats, will always contain a 4-digit year. Return code 8 is set if the target field is
too small.

A source date value without a century will have an implied century of 20 for years 00-49, or 19 for years 50-99.

Date data types recognised and supported by SELCOPY and the data elements to which they apply, are discussed below.

Character Date
Character (TYPE=C) data may have a date interpretation when referenced as the source or target of a CVDATE operation.

If specified as the target of a CVDATE operation, a character field definition or variable may be formatted using a DATE
FORMAT string. If no formatting is performed, the target character date value will contain only numerical digits and no
punctuation. e.g. '2011/03/15' (STYLE=I) would be left-adjusted in the target field as '20110315'".

If specified as the source of a CVDATE operation, the date value represented by a character constant or field definition is
dependent on the specified STYLE.

Character Date Source

In character date source values, numeric characters (0-9) correspond to decimal numeric digits (0-9) respectively and all
non-numeric characters are ignored. Therefore, non-numeric characters may occur at any position within the character source
(e.g. as year/month/day delimiters) without affecting the date value.

Each style of date has a valid number of decimal numeric digits that must be specified. If the number of specified digits are
invalid, then a control statement error will occur for date character constants, otherwise return code 8 is set for the CVDATE
operation and no date conversion is attempted.

The date value is interpreted by evaluating the character data from right to left (i.e. highest to lowest storage address) and
establishing values for the individual date components (e.g. year, month, day) that constitute the date style specified.

Having identified the individual date components, return code 8 is set and date interpretation is cancelled if a component does
not satisfy the component limits . i.e. month number must be in the range 1-12, day of month number in the range 1-28/29/30/31
(depending on the month) and day of year number in the range 1-365/366 (depending on the year.)

STYLE=A and STYLE=B
STYLE=A (USA format) and STYLE=B (British/European format) character dates must contain either 6 or 8 numeric
digits.

If the character date has 6 digits, SELCOPY treats the right-most 2 digits as a year specification with an implied
century of 20 for years 00-49, or 19 for years 50-99. If the date has 8 digits, SELCOPY treats the right-most 4-digits as
the year specification with explicit century number.

Thereafter, the next 2 pairs of digits processed from right to left correspond to the day then numbers (STYLE=A), or
month then day numbers (STYLE=B).

STYLE=D
STYLE=D character dates must include at least 1 numeric digit representing the day number starting at 1900/01/01.

STYLE-=I (default)
STYLE=I (ISO format) character dates must contain either 6 or 8 numeric digits.

SELCOPY treats the right-most 2 digits as the day number and the next 2 digits as the month number. If the character
date has 6 digits, SELCOPY treats the next 2 digits as the year specification with an implied century as described for
STYLE=A and B. Otherwise, the next 4-digits constitute the year specification with explicit century number.

STYLE=J
STYLE=J (Julian format) character dates must contain either 5 or 7 numeric digits.

SELCOPY treats the right-most 3-digits as the day of year number. If the character date has 5 digits, SELCOPY treats
the next 2 digits as the year specification with an implied century as described for STYLE=A and B. Otherwise, the
next 4-digits constitute the year specification with explicit century number.

STYLE=T
Dates of STYLE=T (TOD clock) are of TYPE=B (8-byte binary) and so no character date interpretation is performed.

Examples of source date character values:

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 58

Chapter 3. Data Elements and References Character Date

Character Data Date Value
(Quoted Constant) (FORMAT="yyyy/mm/dd")
'2012/031' STYLE=J 2012/01/31
'12/11/71' STYLE=B 1971/11/12
'40,789' STYLE=D 2011/09/04
'"pe","17","07""' STYLE=A 2007/06/17
'02#bbll1#bbb1983' STYLE=A 1983/02/11
'200/80/703"' STYLE=I 2008/07/03
'315' STYLE=D 1900/11/11

Constants:
Character date constant elements are all of fixed length and their specification is discussed earlier in this chapter.

Fields:
The field definition syntax includes data type specification, TYPE=C, to indicate character data type and a date STYLE
specification. TYPE=C, STYLE-=l is default. e.g.

CVDATE 12014/07/12" TO 1 FORMAT='yyyy/ddd' * Value: 2014/193
CVDATE POS 1 LENGTH 8 TYPE=C STYLE=J TO 6 AT 11 STYLE=D * Value: 041831

Binary Date

A TYPE=B binary (base-2) integer value may be interpreted as a date when referenced as the source or target of a CVDATE
operation. This integer value is a big-endian, binary representation of the decimal digits that constitute a date value.

For any given date, the value will be different depending on its style attribute. e.g. ISO date, 2015/08/25, has a decimal value
20150825 (STYLE=I) or 2015237 (STYLE=J). Represented as hex constants, these decimal values have binary equi