
Compute (Bridgend) Ltd

SELCOPY C++ (SLC) Language Reference

Release 3.50

8 Merthyr Mawr Road, Bridgend, Wales UK CF31 3NH

Tel: +44 (1656) 65 2222
Fax: +44 (1656) 65 2227

CBL Web Site - www.cbl.com

This document may be downloaded from www.cbl.com/documentation.php

CBL Ref: z:\cd\sman\l350\SELCOPY_C++_3.50_Language_Reference.pdf

Contents
Documentation Notes...1

Introduction..2
About this Book...2
SELCOPY Overview...2

SELCOPY Background..2
SELCOPY Development..2
The SELCOPY Language..3
Run-time Environment...3
SELCOPY Applications..3
Maintenance..3

Notation Conventions..4
Summary of Changes...5

Release 3.20 Enhancements...5
Release 3.30 Enhancements...6
Release 3.40 Enhancements...6
Release 3.50 Enhancements...6

Chapter 1. Program Elements..7
Character Set..7

Alphabetic Characters..7
Numerical Characters..8

Decimal Digits...8
Hexadecimal Digits...8

Special Characters...8
Composite Symbols...9
Case Sensitivity...9

Statement Elements..9
Delimiters...9
Identifiers...10

SELCOPY Keywords..10
Programmer Defined Names..10

Constants...12
Operators...12
Comments..12

Comment Text in the Summary Block..13
Comment Text Ignoring Statement Separator..13

Statements..13
Control Statement File...14

End of Program Statements...14
Statement Length...15
Statement Continuation...15
Statement Separation..15

Chapter 2. Program Execution...16
Invoking the Executable..16

Exploiting SELCOPY...16
Locating SELCOPY...16
SELCOPY Command..16
Sample Execution..19

z/OS JCL..19
z/OS TSO/E..20
SELCOPYi..20
UNIX/Linux Shell...20
Microsoft Windows Shell...21

Program Environment...21
CBLNAME..21

CBLNAME SLC Options...21
SELCNAM (SELCOPY.NAM)..22

SELCNAM SLC Options...23
SELCMSG (SELCOPY.MSG)..24

Program Processing..25
Establish Environment...25
Control Statement Analysis..25

Selection Identifiers..25
Variable Substitution...26
File Open..26
Prime Input...26
Control Statement Errors..26

Selection Time Processing..27
Implied Loop...27
Selection Time Errors...27

End of Job Processing...28
SELCOPY List Output...28

SLCLST Environment Variable..29
Header Lines..30
Control Statements..30

SELCOPY C++ (SLC) Language Reference and User Guide

2021/11/01 16:52:05 i

Contents
Chapter 2. Program Execution

Print Block..31
PRINT Block - TYPE=D Output..32

Summary (Totals) Block...33
Summary Block Selection Statistics Columns..33
Summary Block I/O Operation Columns...34

Warning Messages..36
Footer Lines...36

Chapter 3. Data Elements and References...37
Substitution Variables...37

Environment Variables...37
Parameter Variables..37
Equated Symbols...38

Work Area or Input Buffer...38
Work Area..38
Input Buffer..39

Constants..39
Character Constants..39

Unquoted Literals..39
Quoted Character Constants..40
Hex Character Constants...40
ASCII/EBCDIC Character Constants..40
Numeric Character Constants..41
Date Character Constants..41

Numeric Constants..42
Decimal Integer Constants...42
Zoned Decimal Integer Constants..42
Hex Binary Integer Constants...43
Decimal Fixed Point Constants...43
Zoned Decimal Fixed Point Constants...43

Variables...44
Declared Variables...44

Storage Remap...44
Initial Value...44
&varname Source Field Position..45

Internal Variables...45
@Variables..46

Field Definitions...46
Internal Field Definitions..50

ARG..50
CBLNAME..50
DATE..51
DSN..51
FHDR..52
FNAME...52
FSIZE..52
HEAD..52
PARM...53
RBA..53
SCALE..53
UXADIFF..53
UXATPTR...53
UXDW...54
UXINCNT..54
UXLINE...54
UXLINEREM...54
UXLRECL...54
UXPD..55
UXPGNO..55
UXPW...55
UXREASCD..55
UXREPLYL...55
UXRETCD..55
UXRETSYS..55
VOLID...56

Data Types..56
Character Data Types..56

Character Fixed Length..56
Character Variable Length..56
Character Varying Length...57
Character Variable Null Terminated...57

Date Data Types..57
Character Date...58
Binary Date...59
Unsigned Decimal Date..59
Signed Decimal Date..60

SELCOPY C++ (SLC) Language Reference and User Guide

2021/11/01 16:52:05 ii

Contents
Chapter 3. Data Elements and References

Numeric Data Types..60
Binary Integer...60
Decimal Integer...61
Zoned Decimal Integer...62
Decimal Fixed Point..62
Zoned Decimal Fixed Point...62
Hex Floating Point..63
Binary Floating Point...64

Numeric Character Data..64
Numeric Character with FORMAT..65
Numeric Character without FORMAT...65

FORMAT Strings...65
Numeric FORMAT Symbols...66

Digit Control Symbol...66
Decimal Point Control Symbol..66
Zero Suppression Control Symbol..67
Floating Sign Control Symbols...68
Constants..68

Printable Hex FORMAT Symbols..69
Hex Digit Control Symbol..69
Constants..69

DATE FORMAT Symbols..70
Date Control Sequences...70
Constants..71

Expressions...72
Arithmetic Expressions..72
Regular Expressions..73

Regular Expressions Pattern String..73
Value Assignment...78
Input/Output Data Objects...79

Files...79
File Id..79
Fileid Clause...79
File Name...82

STDIN and STDOUT...83
Database Tables..83
SELCOPYi Lists...84
VSAM Files..84
Windows Keyboard..84
Windows Clipboard..85

Data Record Format..85
Fixed Length Record Format...86
Variable Length Record Format...86
Undefined Record Format..88

Chapter 4. SELCOPY Operations...89
Operation Classification..89
Parameter Specification..89
Common Parameters..89

NOPCTL, NOPRINT, NOPSUM..89
STOPAFT..90
TIMES..90

ADD...91
CALL...93
CENTRE...96
CHANGE...97
CHOP..101
CLOSE..103
COMPRESS..106
CP...111
CVDATE..114
CVXX..116

CVxB/CVBx - Convert to and from Binary Integer...118
CVxC/CVCx - Convert to and from Character...118
CVxF/CVFx - Convert to and from Floating Point..118
CVCH/CVHC - Convert to and from Printable Hex..119
CVxP/CVPx - Convert to and from Packed Decimal Integer...120
CVxZ/CVZx - Convert to and from Zoned Decimal Integer..121

DECLARE...122
DELETE..127
DIVIDE..129
DO...131
DUMMY...134
END...135
EQU..136
EXPAND...138

SELCOPY C++ (SLC) Language Reference and User Guide

2021/11/01 16:52:05 iii

Contents
Chapter 4. SELCOPY Operations

FLAG...142
FLUSH..144
GENERATE..146
GOTO..148
IF/AND/OR..150

Standard Compare Condition..155
Character Range Test Condition...156
Pattern Condition...157
Pointer Condition...157
Numeric Condition...158
List Output Condition...158
Input Object Condition...158

INCLUDE..159
INSERT...161
LEFT...165
LOG...166
LOWER...170
MOD..171
MOVE..175
MULTIPLY...178
ODBC..180
OPEN..182
OPTION..184
PLOG..196
PRINT...197
READ..204

ODBC Table Read...220
Header Records..220
Column Declared Variables..220

SELCOPYi List Read...221
Direct Read..223
Directory Record Read..224

z/OS PDS/PDSE Library Directory Records...224
z/VM CMS File Directory Records..225
Windows and Unix-like File Directory Records...226

RETURN...228
RIGHT...229
SLEEP...230
SPACE..231
STACK..232
START..235
SUB...236
SUSP..238
SYSTEM...240
TRAN..242
UPDATE..245
UPPER..249
UTIME...250
WRITE...252

VSAM Write...265
KSDS Write...265
RRDS Write..266
ESDS Write...266

ODBC Table Write...266
Window Keystroke Write..268

Keystroke Syntax..268
Keystroke Parameters..268
Non-US and Non-UK National Keyboards..269
Keystroke Example...270

XV...271

Appendix A. Regular Expression Summary...274
Operators and Text Specifiers..274
Predefined Expressions..274

Appendix B. Operation, Parameter and Argument Keywords..275
Operation to Parameter Keyword Cross-Reference...275
Parameter to Operation Keyword Cross-Reference...277
Parameter to Argument Keyword Cross-Reference..281
Argument to Parameter Keyword Cross-Reference..281
Keyword Abbreviations...282

Glossary...284

SELCOPY C++ (SLC) Language Reference and User Guide

2021/11/01 16:52:05 iv

Documentation Notes

Third Edition, November 2020

Information in this document details general features and functionality of the SELCOPY 3.50 C++ program, available on mainframe
platforms as component SLC of SELCOPY Product Suite, and on Windows, iSeries and supported Unix platforms as SELCOPY.

Copyright in the whole and every part of this document and of the SELCOPY C++ system and programs, is owned by Compute
(Bridgend) Ltd (hereinafter referred to as CBL), whose registered office is located at 8 Merthyr Mawr Road, Bridgend, Wales, UK,
CF31 3NH, and who reserve the right to alter, at their convenience, the whole or any part of this document and/or the SELCOPY
C++ system and programs.

SELCOPY for Windows, iSeries and supported Unix operating systems and SELCOPY Product Suite for z/OS, z/VM (CMS) and
z/VSE operating systems are available for download and install from www.cbl.com/selcdl.php .

The following publications for SELCOPY Product Suite and its component products are available in Adobe Acrobat PDF format at
www.cbl.com/documentation.php :

SELCOPY Product Suite Customisation Guide•
SELCOPY User Manual•
CBLVCAT User Manual•
SELCOPYi Reference and User Guide•
SELCOPYi Text Editor Manual•
SELCOPYi Data Editor (SDE) Manual•
SELCOPYi REPORT Utility•
SELCOPYi SMF Utilities•
SELCOPYi Training Manual•
SELCOPYi Quick Reference•

No reproduction of the whole or any part of the SELCOPY C++ system and programs, or of this document, is to be made without
prior written authority from Compute (Bridgend) Ltd.

At the time of publication, this document is believed to be correct. Where the program product differs from that stated herein,
Compute (Bridgend) Ltd reserve the right to revise either the program or its documentation at their discretion. CBL do not warrant
that upward compatibility will be maintained for any use made of this program product to perform any operation in a manner not
documented within the user manual.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 1

Introduction

This chapter provides an introduction to SELCOPY (C++ version) batch executable and its possible applications.

About this Book

This book is a language reference for programs written in the SELCOPY language and processed by the following Compute
(Bridgend) products:

SELCOPY Product Suite, SLC for z/OS•
SELCOPY Product Suite, SLC for z/VM CMS•
SELCOPY for Windows (32-bit)•
SELCOPY for Linux (i386)•
SELCOPY for Linux (System z)•
SELCOPY for OS/400•
SELCOPY for AIX•
SELCOPY for Solaris (SPARC)•
SELCOPY for HP-UX (PA-Risc)•
SELCOPY for Tru64 (Alpha)•

It provides all the relevant information and guidance required to develop a SELCOPY program.

SELCOPY Overview

This section provides a general overview and history of the SELCOPY software product.

SELCOPY Background

The name SELCOPY is derived from data SELect and COPY, a general description of some of the earliest applications to be
written using the software.

SELCOPY was first developed in the BAL (Basic Assembler Language) on IBM mainframe platforms for OS and DOS operating
systems, known today as z/OS, z/VSE and z/VM CMS. The BAL version of SELCOPY was first made generally available in 1971.
Since this time, it has been actively developed and is currently operational in many mainframe installations worldwide.

Development for SELCOPY written in C++ was started in 1994 for portability across IBM mainframe, AS/400 and the various PC
and Unix platforms. Its specification was based on that of SELCOPY written in BAL and so, with only a few exceptions, supports
the same syntax. The first release of SELCOPY written in C++ was made generally available in 1996 for PC-DOS/MS DOS, with
versions for Microsoft Windows, AS/400, Linux and other Unix operating systems following thereafter.

Since its first release, the C++ version of SELCOPY has introduced many new facilities that are not available in the BAL version. In
2011, so that programmers on mainframe systems could take advantage of these new facilities, the C++ version of SELCOPY was
compiled for z/OS and z/VM CMS systems and included as an executable module, SLC, within the SELCOPY Product Suite
package for each system. The executable module, SELCOPY, continues to be included within the SELCOPY Product Suite and
remains the default SELCOPY language interpreter for legacy programs.

SELCOPY Development

SELCOPY development and support on various operating platforms has primarily been, and continues to be, driven by user
requests. Consequently, new releases and build levels have been made generally available only for current operating systems and
only for operating systems on which SELCOPY programs are actively being developed. e.g. SELCOPY for OS/2 is no longer
developed.

If you are interested in developing new or existing SELCOPY programs and the SELCOPY executable for the system on which you
operate is not currently supported or is at a back level, please contact Compute (Bridgend).

Similarly, any comments, new feature requests or software defect reports may be emailed to Compute (Bridgend) at:
support@cbl.com

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 2

The SELCOPY Language

SELCOPY is a high level, interpreted language and so a SELCOPY program requires no compilation before execution.

Like Assembler, C and COBOL, SELCOPY is a non-structured, procedural programming language which consists of sequentially
ordered statements and supports labels allowing execution flow to jump to any location within the program.

The language itself is designed to be practical and easy to understand so that inexperienced programmers may deduce the
function of a SELCOPY application without in-depth analysis.

The SELCOPY (or SLC) executable accepts the SELCOPY program as control input, interprets all control statements in order to
translate them into SELCOPY internal structures, then executes the statements in order of sequence.

Run-time Environment

Run-time environment pre-requisites exist for C++ SELCOPY executed in the following operating systems.

IBM z/OS
On mainframe z/OS systems, the SELCOPY C++ (SLC) object modules are compiled using the XL C/C++ compiler which
requires Language Environment. Language Environment is an IBM supplied architecture that is integral to modern z/OS
operating systems and establishes the run-time environment required to run the SLC executable.

SLC can share the run-time environment with other called executables written in languages that conform to the Language
Environment architecture.

Microsoft Windows
Required only for SELCOPY support of Micro Focus VSAM files, a folder containing the following run-time (dynamic link)
libraries must exist in the PATH environment variable definition.

CBLRTSS.DLL◊
MFFH.DLL◊

Input/Output of VSAM (Virtual Storage Access Method) files, a data format native to IBM mainframes, is supported by
SELCOPY on Windows platforms via the suite of products provided by Micro Focus International plc.

SELCOPY Applications

A SELCOPY program may be written to perform any number of tasks but is primarily associated with the manipulation of data read
from, and subsequently written to, any number and combination of files, data streams or database tables.

Some common uses include:

Data modification and verification steps within production z/OS batch jobs.•
Interrogation and reformat of data as part of a CLIST or Rexx procedure, Unix script, Windows VBScript or batch file
execution.

•

Quick, execute once only jobs to trouble shoot and fix data.•

Support to seamlessly perform file I/O on multiple, potentially different file formats using simple syntax makes writing a SELCOPY
program a flexible, quick and easy alternative to using system utilities (e.g. sed, grep, awk or z/OS IEBCOPY, IEBGENER).

Maintenance

Corrections to software defects and introduction of new functionality are included in C++ SELCOPY as new builds of the current,
generally available release.

Update of SELCOPY to a new build level involves replacement of the SELCOPY executable which, for z/OS systems, is achieved
via an SMP/E SYSMOD to the SELCOPY Product Suite and, for z/VM CMS systems, via a VMARC archive file extraction. For all
other operating systems, the install process must be repeated for the updated SELCOPY product package.

Build levels are incremental. The current build level number of a C++ SELCOPY release follows a period (.) separator which is a
suffix to the release number displayed in the SELCOPY list output footer text. e.g. The following footer records are written by
SELCOPY for Windows Release 3.20 Build level 001.

** SELCOPY/WNT 3.20.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 17 Jul 2014 **

The build level is also included in the SELCOPY version output, displayed when input parameter -V is passed to the SELCOPY
executable.

Introduction The SELCOPY Language

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 3

http://www.microfocus.com

Notation Conventions

The following list defines notations used in this publication.

Text in syntax diagrams and examples of SELCOPY syntax are presented in a monospace font.•

SELCOPY keyword identifiers appear in upper case (e.g. READ, WRITE, IF) although may be entered in upper or lower
case, or a mixture of cases.

•

SELCOPY keyword identifiers representing operation parameters may have trailing, lower case characters. The upper
cased portion of the keyword identifies the minimum abbreviation for the keyword. (e.g. Vchar indicates that V, VC, VCH,
VCHA and VCHAR are all acceptable alternatives)

•

Variables appear in lowercase italics (e.g. field_nATp) and represent programmer defined parameters or keyword
parameter values.

•

Syntax diagram footnote references are represented by a number in parentheses (e.g. (1)).•

A single blank may be represented by character b.•

Syntax diagrams adhere to the following standards:

Arrow Symbols

Diagrams should be read from left to right, top to bottom and follow the path of the line. Junctions in the line are
represented by a plus (+) symbol.

>>- indicates the beginning of a statement.◊
-> indicates the statement syntax continues on the next line.◊
>- indicates the statement syntax has been continued from the previous line.◊
->< indicates the end of a statement.◊

The horizontal path line, delimited by arrow symbols, denotes the main path of the syntax diagram.

Required Items

Required items appear on the main path.

 >>-- REQUIRED_ITEM --------------------------------><

Optional Items

Optional items appear below the main path.

 >>-- REQUIRED_ITEM ---+----------------------+-----><
 | |
 +-- optional_item -----+

If an optional item appears above the main path, then that item has no effect on the execution of the statement and is
used only for readability.

 +-- optional_item -----+
 | |
 >>-- REQUIRED_ITEM ---+----------------------+-----><

Multiple Required or Optional Items

If one or more alternative optional items exist, they appear vertically on separate paths. If selection of one of the items is
optional, the items appear in paths below the main path.

 >>-- REQUIRED_ITEM ---+----------------------+-----><
 | |
 +-- optional_choice1 --+
 | |
 +-- optional_choice2 --+

If selection of one of the items is mandatory, one of the items appears on the main path and all other items appear on
paths below the main path.

 >>-- REQUIRED_ITEM ---+-- required_choice1 --+-----><
 | |
 +-- required_choice2 --+

Introduction Maintenance

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 4

Repeatable Items

An arrow occurring above a path line returning to a junction to the left of another junction indicates the item between the
junctions may be repeated.

 +----------------------+
 v |
 >>-- REQUIRED_ITEM ---+-- repeatable_item ---+-----><

If the arrow occurs above a number of multiple item paths, this indicates that more than one of the items may be specified
and each of the items are repeatable.

Default Items

If one of a number of optional items is default, the path containing that item appears above the main path.

 +-- default_choice ----+
 | |
 >>-- REQUIRED_ITEM ---+----------------------+-----><
 | |
 +-- optional_choice ---+
 | |
 +-- optional_choice ---+

Fragments

Syntax diagrams may be split into fragments so that related syntax items are removed from the diagram and displayed in
a syntax diagram fragment below.

Fragments are named and their location within the parent diagram represented by the fragment name in bold print,
enclosed in vertical bars (or symbols). The same vertical bars are used to indicate the beginning and end of the syntax
diagram fragment below the parent diagram.

 >>-- REQUIRED_ITEM --- item1 --------| fragment |--><

fragment:

 |---+-- item2 --+--- KEYWORD --+-----------+-------|
 | | | |
 +-- item3 --+ +-- item4 --+
 | |
 +-- item5 --+

Summary of Changes

This section is a summary of new features included in different releases of C++ SELCOPY.

Release 3.20 Enhancements

Release 3.20 includes the following product enhancements:

In the print control block of SELCOPY's output report, display the offset from the start of the field of printed data that
streams onto second and subsequent print lines.

•

z/OS only: Use RECFM of the input file (data set) as the default for output HFS or ZFS files as opposed to RECFM=U
EOL=LF.

•

z/OS only: As for the BAL version of SELCOPY, the length value displayed against an output file in the summary block of
SELCOPY's output report is that of longest record written. Previously, the defined LRECL value was displayed.

•

Support new operation CHANGE.•

Support multiple field specifications on WRITE and MOD operations.•

Windows only: Support WRITE of keyboard keystrokes to other opened windows.•

Windows only: Support READ and WRITE of data to and from the Windows clipboard.•

Introduction Notation Conventions

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 5

Release 3.30 Enhancements

Release 3.30 includes the following product enhancements:

Regular expressions supported as search strings on IF/AND/OR and CHANGE operations.•

Support for variable length character data types on the DECLARE operation.•

Support MATCHLEN parameter on IF/AND/OR operations to assign the length of matched text to an @variable or
declared variable following a character or regular expression compare.

•

Support CASEI parameter on the CHANGE operation to ignore alpha character case in the search string specification.•

Windows only: Support WIN RESET on the WRITE operation for Windows key stroke output.•

Release 3.40 Enhancements

Release 3.40 includes the following product enhancements:

z/OS and z/VM CMS only: Support debug via the SELCOPY Debug utility of SELCOPYi (a component of the SELCOPY
Product Suite). See the "SELCOPYi Reference and User Guide" for details.

•

SELCOPY build date included in the list output footer information.•

Additional SORTDIR codes supported to allow alternative (ascending/descending) input directory sort sequences based
on the date, size, name, extension or path fields returned by a READ DIR/DIRDATA operation.

•

Declared variables of data type CHARZ are now initialised as null length strings if the INI has not been specified on the
DECLARE operation.

•

Release 3.50 Enhancements

Release 3.50 includes the following product enhancements:

64-bit Linux: A 64-bit version of SELCOPY now exists for operation on Linux operating systems compiled for x86-64
(64-bit) architecture.

Use of the 32-bit SELCOPY for x86 Linux on a 64-bit Linux system requires install of 32-bit libraries for legacy software.
These libraries are not required if 64-bit SELCOPY for x86-64 Linux is installed.

•

SELCOPY for x86-64 Linux only: Internal field definitions UXADIFF, UXATPTR, UXINCNT and UXLRECL are defined
as 8-byte, binary value fields in big-endian format. In all other SELCOPY versions, these fields are defined as 4-byte
binary value fields in big-endian format.

•

CHANGE operation now includes support for PTR and MATCHLEN (or MLEN) operands. The position of the first
occurrence of the CHANGE search string found within the field will be assigned to the specified PTR @variable and its
length assigned to the @variable or declared variable specified by MATCHLEN.

Note that, use of MATCHLEN is useful if the length of the search string is variable (i.e. if the search string is specified as a
regular expression).

•

Regular expressions, which may be used in IF/AND/OR and CHANGE operations, now support additional
predefined_expression values ":h" (hexadecimal numbers), ":i" (C-language identifiers) and ":n" (numbers with or without
a decimal point).

•

SLC for z/OS only: For spanned record input (RECFM=VS or VBS), SLC will allocate an input record buffer of length
equal to the LRECL value specified on the READ operation, otherwise a default buffer of length 64K. If a spanned, input
record exceeds this length, then ERROR 581 "LRECL ON RECFM=V INPUT RDW EXCEEDS CODED LRECL" is
returned.

•

WRITE operation default is TRUNC to truncate trailing truncation characters (default blanks). However, if output is to any
of the following, the default now becomes NOTRUNC:

z/OS data sets and library members of RECFM V, VB or U.♦
♦ z/OS HFS/ZFS (Unix-like) files.♦
♦ VSAM KSDS and ESDS data sets.♦
Micro Focus indexed and record sequential files.♦

•

Introduction Release 3.30 Enhancements

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 6

Chapter 1. Program Elements

This chapter describes the basic elements used to write a SELCOPY program.

Character Set

SELCOPY supports only syntax written in single byte character set (SBCS) that conforms to the invariant (syntactic) character set
0640. A character belonging to character set 0640 has the same code point in all code pages. This is true of all ASCII (ISO) code
pages and most EBCDIC code pages.

SELCOPY C++ source is written using code page 819 (ISO-8859-1 Western Europe) and converted to code page 285 (EBCDIC
UK) for mainframe compilation. Therefore, by default, SELCOPY assumes that characters are at code points defined by these code
pages.

Code pages 819 and 285 contain the English alphabet characters, 10 decimal digits, special characters and other national
language and control characters. SELCOPY constants, programmer-defined names and comment text may contain characters at
any SBCS code point. Other SELCOPY syntax elements (e.g. keywords, delimiters and operators) are limited to alphanumeric
characters and certain special characters only. These are detailed in the following sections.

Alphabetic Characters

The 26 upper case and 26 lower case alphabetic characters that comprise the English alphabet.

Character EBCDIC Hex ASCII Hex Character EBCDIC Hex ASCII Hex
A C1 41 a 81 61
B C2 42 b 82 62
C C3 43 c 83 63
D C4 44 d 84 64
E C5 45 e 85 65
F C6 46 f 86 66
G C7 47 g 87 67
H C8 48 h 88 68
I C9 49 i 89 69
J D1 4A j 91 6A
K D2 4B k 92 6B
L D3 4C l 93 6C
M D4 4D m 94 6D
N D5 4E n 95 6E
O D6 4F o 96 6F
P D7 50 p 97 70
Q D8 51 q 98 71
R D9 52 r 99 72
S E2 53 s A2 73
T E3 54 t A3 74
U E4 55 u A4 75
V E5 56 v A5 76
W E6 57 w A6 77
X E7 58 x A7 78
Y E8 59 y A8 79
Z E9 5A z A9 7A

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 7

Numerical Characters

The 10 numerical characters.

Character EBCDIC Hex ASCII Hex Character EBCDIC Hex ASCII Hex
0 F0 30 5 F5 35
1 F1 31 6 F6 36
2 F2 32 7 F7 37
3 F3 33 8 F8 38
4 F4 34 9 F9 39

Decimal Digits

SELCOPY recognises decimal digits written using numerical characters, 0 through 9. They are referred to simply as digits and
are used to write numerical arguments and constants in decimal notation.

Hexadecimal Digits

SELCOPY recognises 16 hexadecimal digits written using numerical characters, 0 through 9 and alphabetic characters, A
through F, which altogether represent decimal values 0 through 15. They are referred to as hex digits and are used to write
numerical constants or character string constants in hexadecimal notation.

Hex digits may be specified using upper and/or lower case characters. i.e. digits A,B,C,D,E,F may be written as: a,b,c,d,e,f.

Special Characters

The following table identifies non-alphanumeric characters that can have special significance in SELCOPY syntax.

Character Description EBCDIC Hex ASCII Hex
b Blank 40 20
! (1) Exclamation mark 5A 21
" (1) Quotation mark 7F 22
% Percent 6C 25
& Ampersand 50 26
' Apostrophe 7D 27
(Left parenthesis 4D 28
) Right parenthesis 5D 29
* Asterisk 5C 2A
+ Plus sign 4E 2B
, Comma 6B 2C
- Minus sign 60 2D
. Period / Decimal Point 4B 2E
/ Slash 61 2F
: Colon 7A 3A
< Less than symbol 4C 3C
= Equals sign 7E 3D
> Greater than symbol 6E 3E
@ (1) Commercial at 7C 40
\ (1) Backslash E0 5C
^ (1) Circumflex accent BA 5E
¬ (1) Not sign 5F AC

(1) The exclamation mark (!), quotation mark ("), commercial at (@), backslash (\), Circumflex (^) and Not sign (¬) have
variant EBCDIC code points whereas, in ASCII code pages, only the Not sign (¬) is a variant code point.

Chapter 1. Program Elements Numerical Characters

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 8

Composite Symbols

Special characters may be combined, with no intervening blank delimiters, to create composite symbols. The following table
identifies valid composite symbols and their meaning.

Character Meaning
<> or ^< or ¬= Not equal to
<= or =< Less than or equal to
>= or => Greater than or equal to
^> or ¬> Not greater than
^< or ¬< Not less than
*< Comment ignoring statement separator
*> Comment to appear in output summary
/* End of program input

Case Sensitivity

Any combination of uppercase and lowercase alphabetic characters may be used in SELCOPY control statement syntax.

Lowercase characters used in most identifiers are treated as being their uppercase equivalents. Exception are characters in quoted
character constants, comment text and Windows, Unix, OpenVM or OpenMVS style fileid identifiers, where lowercase characters
are treated as being lowercase.

Statement Elements

A SELCOPY program is comprised of a number of control statements.

SELCOPY statement elements are categorised as delimiters, identifiers, constants, operators or comment text.

Delimiters

The following table shows delimiter characters that may be used to separate identifiers and constants.

Delimiter Name Usage
b
,
= (1)

Blank
Comma
Equals sign

A blank delimiter used to separate statement elements.

! Exclamation mark Statement separation character.
() Parentheses Used to enclose length or precision/scale specification for declared variables.
: Colon If the last character of the first statement identifier, denotes the identifier as being a label

name.
\ Backslash If the last non-blank character of a control file record, indicates statement continues on the

next control file record.

(1) The equals sign is a blank delimiter unless it is part of a composite symbol.

Delimiter characters may be used in other contexts. For example Backslash is the control file statement continuation character if
the last non-blank character of a record, but may also be used to connect the file path directory elements in a Windows or Unix
style file identifier. (e.g. \\MyPC\c\tmp\Myfile.txt and \usr\home\usera\sample.txt).

With the exception of colon (:), all delimiter characters may be surrounded by one or more of the blank delimiter characters ("b", ","
or "="). Any number of blank delimiters may be specified where one blank delimiter is supported. e.g.

 DECLARE INREC CHAR (256)

A colon, when used as label name delimiter, must immediately follow the label name and must be followed by at least one blank
delimiter.

Chapter 1. Program Elements Composite Symbols

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 9

Except where specified in a character string constant, multiple consecutive blank delimiter characters are equivalent to a single
blank delimiter character.

Identifiers

Identifiers are a series of characters that are not part of a comment or a constant.

Identifiers can be SELCOPY keywords or programmer-defined names.

The first character of an identifier must be preceded by a delimiter or occupy the first character of a control file record. Similarly the
last character of an identifier must be followed by a delimiter or occupy the last character of a control file record to be processed by
SELCOPY. Exceptions to this rule are environment variables and parameter variables which may be preceded or followed by any
character.

A programmer defined name identifier that represents a numeric value may also be preceded or followed by an arithmetic operator
when specified as a term in an expression.

One or more of the blank delimiter characters must separate identifiers that are not separated by some other delimiter, arithmetic
operator or control file record boundary.

Programmer-defined names that represent a variable or label cannot be the same as a keyword identifier that represents one of
SELCOPY's operation keywords that can be specified without a parameter keyword. In all other circumstances, SELCOPY can
determine whether or not the identifier is a keyword, in which case programmer-defined names may be the same as a keyword
identifier.

SELCOPY Keywords

Keyword identifiers are character strings that have special meaning to the SELCOPY program. Keywords may represent
operations that instruct SELCOPY to perform some action, or parameters to an operation.

Programmer Defined Names

Programmer-defined name identifiers are character strings that are used as variables, substitution variables, labels, filenames
and fileids.

A programmer-defined name may contain any character, though support for special characters depends upon the type of
programmer-defined name and the character's significance to SELCOPY. i.e. a programmer-defined name must not include a
delimiter or operator character where it may be interpreted as such. e.g.

Any blank delimiter will denote a new identifier.•
Statement continuation will occur if the name has a trailing backslash (\) character and is the last statement identifier.•

An arithmetic expression may be compromised if it involves a programmer-defined name that contains plus (+) or
minus (-) symbols.

•

Because of this, it is generally advised that special characters should not be used in programmer-defined names. Furthermore,
programmer-defined names that conflict with SELCOPY keyword identifiers (or keyword identifier synonyms) should be
avoided.

The different types of programmer-defined names and their notation rules are as follow.

Internal Variables

Variables defined by SELCOPY for general use in SELCOPY program statements. The names of these variables are
pre-determined. e.g. RETCD, LINE and LRECL

Declared Variables

Variables defined by the programmer using the DECLARE operation or generated by SELCOPY for each column of
data returned by ODBC or SELCOPYi list input.

Apart from restrictions applicable to all programmer-defined names, declared variable names may be of any length and
can contain any character with the following exceptions:

The name must not contain apostrophes (') or quotation marks (").1.
The first character must not be special character ampersand (&).2.
The first character must not be a decimal digit (0 to 9).3.
The first character must not be special character percent (%) if all remaining characters are decimal digits.4.

A declared variable must not have the same name as an internal variable or an operation keyword. If so, no error
occurs but the identifier will be interpreted as referencing the internal variable or, if the first identifier in the statement,
the operation keyword.

Chapter 1. Program Elements Delimiters

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 10

@Variables

Integer value variables that have names of any length but must begin with the special character, commercial at (@).

Environment Variables

Variables that have been set by the operating system environment. i.e. Windows and Unix Environment Variables,
z/OS and CMS REXX variables and, in z/OS TSO only, z/OS system symbols.

An environment variable name comprises the name of the system environment variable enclosed within percent
symbols (%) with no intervening delimiter characters. e.g. %USERNAME% and %SYSNAME%

Alternatively, for z/OS systems only, the environment variable may be expressed as the variable name prefixed by an
ampersand (&) and suffixed by a period (.) with no intervening delimiters. e.g. &SYSNAME.

Unlike other identifiers, environment variable names do not need to be enclosed by delimiter characters or the limits of
the control file record. e.g. 'user%USERNAME%#001'

Parameter Variables

Variables that represent parameter numbers 0 to 9 passed to the SELCOPY program, where parameter number 0 is
the SELCOPY executable program name.

A parameter variable name is comprised of a single decimal digit that corresponds to the parameter sequence number,
prefixed by the percent symbol with no intervening delimiter characters. e.g. %3 corresponds to the 3rd input
parameter.

Unlike other identifiers, parameter variable names do not need to be enclosed by delimiter characters or the limits of
the control file record. e.g. 'Parm%3:'

Equated Symbols

Equated symbols are names defined by the programmer using the EQU operation and represent an equated value.
Each occurrence of an equated symbol in control statements that follow the EQU operation will be substituted with the
equated value.

An equated symbol name can be of any length.

Labels

A label must be the first identifier in a statement and represents a location within the SELCOPY statements to which
processing may be directed via a GOTO or DO operation.

A label name can be of any length but the last character must not be delimiter character colon (:) which may optionally
be used to denote the end of a label.

File Names

A file name is 1 to 8 characters in length and is used by SELCOPY to identify an input or output data object.

Fileids

A fileid is the name by which a file or data set is known to the executing operating system. Fileid names are specified
on SELCOPY I/O statements for the purpose of associating or dynamically allocating the fileid to a file name.

A fileid name may consist of any character and be of any length and format supported by the executing operating
system. Fileids often include special characters that qualify or delimit portions of the fileid name. e.g. colon (:), slash (/),
backslash (\), period (.) and parentheses (()).

If a fileid name contains one of SELCOPY's blank delimiter characters, quotation marks, apostrophes or the separator
character, then it should be enclosed in quotations marks (") or apostrophes (') as appropriate.

Chapter 1. Program Elements Programmer Defined Names

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 11

Constants

Constants are a series of characters that represent a value with an implied data type and length.

One or more of the blank delimiter characters must separate constants that are not separated by some other delimiter, arithmetic
operator or control file record boundary.

The value, data type and length of a constant are established by SELCOPY during control statement analysis processing and
cannot subsequently be changed by the programmer. See Data Elements and References for details on specification of constant
values.

Operators

The following table shows operators that may be used to separate identifiers and constants. Operators may be single characters,
composite symbols or SELCOPY keywords.

Operator Type Operator Description
Arithmetic
(Constants/Expressions)

+ Add or unary plus
- Subtract or unary minus

Relational
(Conditions)

= b ,
EQ EX EXACT

Equal to

<> ^ ^= ¬ ¬=
NE NOT

Not Equal to

<
LT

Less than

>
GT

Greater than

<= =< ^> ¬>
LE NGT HI HIGH

Less than or equal to. Not greater than. High limit.

>= => ^< ¬<
GE NLT LO LOW

Greater than or equal to. Not less than. Low limit.

Bitwise
(Conditions)

ONES Bits selected by the mask are all on.
ZEROS ZEROES Bits selected by the mask are all off.
MIXED Bits selected by the mask are not all on or all off.

Logical
(Data Modification)

OR Inclusive or. Bit is on if either of the bits are on. Otherwise bit is off.
XOR Exclusive or. Bit is on if either (but not both) of the bits are on.

Otherwise bit is off.
AND And. Bit is on if both of the bits are on. Otherwise bit is off.

With the exception of the arithmetic operators plus (+) and minus (-) and relational operators equals (=), blank (b) and comma (,),
all operator must be surrounded by one or more of the blank delimiter character. e.g. The following statements are valid:

 IF POS 23 LEN 4 TYPE=B >= 245
 THEN @ARR=DVAR-245
 THEN @VAL = DVAR + 20 - @ARR

However, the following is invalid:

 IF @ARR<DVAR

Comments

Comments may exist as the whole or part of a SELCOPY statement as a method of providing explanatory notes to programmers
reading the statements. The comment data itself is ignored by SELCOPY and does not affect the logic of the control statements.

Comment text begins at the first occurrence within a control file record of the special character asterisk (*) that is not part of a
quoted character constant. The asterisk must either be the first character of the statement or be preceded by one of the blank
delimiter characters.

Comment text is terminated by an exclamation mark (!) statement separator character (SEP option) that is not part of a quoted
character string constant, or the end of a control file record that does not end with the statement continuation character backslash
(\). (See statement continuation and separation for details.)

Because of their special significance, comment text may not include the separator character (see comment text ignoring statement
separator if this is required) nor end with the statement continuation character in the last non-blank character of the control file
record. Otherwise, comment text may contain any character. e.g.

Chapter 1. Program Elements Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 12

 **Start of main processing loop. !DECLARE INREC1 CHAR(80)
 READ DDIN1 INTO INREC1 * Input records into variable INREC1.
 IF EOF DDIN1 * If no more records. !THEN EOJ * End the program.

The following two additional forms of comment specification exist that have special significance to SELCOPY.

Comment Text in the Summary Block

Using composite symbol, asterisk greater than (*>), as the start of the comment will display the comment text next to a
statement's selection identifier number within the summary block of SELCOPY's output diagnostic report. This may be
particularly useful when diagnosing execution of SELCOPY programs that include a large number of control statements.

This type of comment is applicable only on statements that execute an operation other than one of the following:

A program environment operation.•
An Input/Output operation other than PRINT, LOG and PLOG.•
An IF, OR or AND operation.•

If specified on statements that do not match this criterion, the comment will be treated as a regular comment and so will not be
displayed in the summary block.

 IF INCOUNT DDIN1 = 1
 THEN PERFORM FIRST_RECORD *> Execute First_Record Subroutine.

Comment Text Ignoring Statement Separator

A composite symbol, asterisk less than (*<), as the first delimiter of a statement will treat all text that follows as comment text,
ignoring any subsequent statement separator characters. This type of comment is only terminated by the end of a control file
record that does not end with the statement continuation character backslash (\).

 PRINT V1 * Comment. ! *< PRINT V2 !PRINT V3 * Only V1 is printed.

*< Using this type of comment allows \
 the comment data to stream over a \
 number of control file records.

Statements

Identifiers, delimiters, operators and constants are used to construct SELCOPY statements.

Null statements and statements containing only blank delimiters are ignored by SELCOPY. They may be entered as aesthetic
additions to the control statement file and serve only to increase the spacing between statements displayed in the execution output
diagnostic report.

By default, statements are terminated by the end of the control file record in which it occurs. Continuation of statements onto
second and subsequent file records is possible by entering the continuation character, backslash (\), as the last non-blank
character of the file record.

Similarly, statements may be terminated before the end of the control file record using the statement separation character,
exclamation mark (!) In this way, multiple statements may exist on a single control file record.

Non-blank statements have the following format:

>>--+----- operation -------------------------------+-----------------------><
 | |
 +----- sub-operation ---------------------------+
 | |
 +----- assignment ------------------------------+
 | |
 +----- comment ---------------------------------+
 | |
 +--+-- label ---------------------------+-------+
 | |
 +-- label: ---+-------------------+--+
 | |
 | +------------+ |
 | v | |
 +--+- parm -----+---+

operation
Execute a SELCOPY operation. The statement must start with one of SELCOPY's operation keywords.

sub-operation
A sub-operation statement must start with one of SELCOPY's sub-operation keywords. Sub-operations may be one of the
following:

Chapter 1. Program Elements Comments

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 13

A logical sub-operation (AND or OR) which must immediately follow an IF operation or another logical
sub-operation.

◊

The conditional sub-operation, THEN, which must immediately follow an IF operation, a logical sub-operation or
another conditional sub-operation (THEN or ELSE).

◊

The conditional sub-operation, ELSE, which must immediately follow a THEN sub-operation.◊

The conditional sub-operation, CAT, which must immediately follow a READ operation.◊

assignment
An assignment statement assigns a value to a variable or a field.

comment
A comment statement contains only comment text, denoted by asterisk (*) as the first non-blank character of the
statement. See statement elements, comments for details.

label
A label identifies a location in the program to which a logic flow operation may direct SELCOPY's processing. A
terminating colon (:) is mandatory if the label identifies the start of a sub-routine that is to declare variables (DCLvar) and
assign them values passed to the sub-routine as parameters.

parm
A sub-routine parameter name to which a value specified on a DO label operation will be assigned.

Control Statement File

The SELCOPY executable can accept control statements passed to it as a parameter string or via an input file (data set).

Control statements passed as program parameters are done so as a continuous stream of text with the statement separator
character being used to delimit the individual statements. This is documented in more detail under Program Execution.

SELCOPY statements provided in a control file exist on one or more discrete lines (records) belonging to the file. Unless the
continuation character is used, the end of a control file record is the natural control statement delimiter.

Hierarchical file systems are native to Windows, Unix and OS/400 operating systems and also exist on z/VM and z/OS systems as
CMS BFS and z/OS HFS or ZFS file systems respectively. Control files belonging to a hierarchical file system contain variable
length lines that are terminated by end-of-line characters (e.g. LF or CRLF). Control statements may occupy all available
characters in this type of control file record.

Control file records belonging to native CMS files and z/OS data sets may be of fixed or variable length (RECFM=F or V).

For RECFM=V format control files, the defined LRECL includes the 4-byte RDW reducing the maximum length of a record by 4.
SELCOPY control statements may occupy all available characters of a RECFM=V variable length record up to this maximum
length.

For RECFM=F control files, the last 8 characters are reserved for sequence numbers and so are ignored by SELCOPY. Therefore,
control statements may occupy all but the last 8 characters of a RECFM=F fixed length record.

End of Program Statements

SELCOPY program control statement input is naturally terminated by the end of the control statement file. Exceptions to this are
as follow:

The end of program indicator is encountered before the last record of the control statement file is read. The end of
program indicator is composite symbol (/*) occupying the first two columns of a statement.

•

The end of program indicator is passed as a control statement via the SELCOPY program parameters. Control
statements passed as program parameters are executed before those passed in the specified control statement file.

•

No control statement file is specified, either via the -ctl program parameter or stdin (SYSIN for z/OS and z/VM CMS),
and no end of program indicator is passed to SELCOPY via the SELCOPY program parameters. In this case,
SELCOPY accepts its control statement input via the user's terminal.

•

The input control file is a concatenation of a number of files (or data sets). In this case, unless the end of program
indicator is encountered first, end of program statements occurs at the last record of the last concatenated file.

•

The end of program indicator is encountered within a control statement file that is itself included within supplied control
statements via the INCLUDE operation.

•

Chapter 1. Program Elements Statements

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 14

Statement Length

SELCOPY control statements have a default maximum length of 4096 characters. This maximum may be extended (but not
reduced) using the CONTMAX program environment option.

This limit actually corresponds to the maximum length of a control file record or, if statement continuation is used, concatenation of
control file records. It also includes the length of any end-of-line characters. e.g. The default maximum length of a statement
starting in column 1 of a CRLF terminated control file record is 4094.

Therefore, the maximum length of a SELCOPY control statement is further reduced when the statement separator character is
used to specify multiple statements on the same control file record.

Where statements are provided as parameters to the SELCOPY executable, this maximum applies to the sum of the statement
lengths. However, the limit may further be reduced by environment constraints. e.g. Windows XP supports a maximum of 8191
characters entered at the command prompt or via a batch file.

Statement Continuation

SELCOPY statements in control files may span several, consecutive control file records using the statement continuation character,
backslash (\).

The statement continuation character must occupy the last non-blank character of each file record over which the statement will be
streamed.

*...,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....
 READ EMPTAB SQL=" \
 select substr(full_name,1,25) NAME, assignment_id, \
 P.effective_start_date, employee_number \
 \
 from per_all_people_f P, \
 per_all_assignments_f A \
 \
 where employee_number > '7482' \
 and P.person_id = A.person_id \
 " * Input Oracle database result table rows.

Text belonging to the record following a record ending with the continuation character is joined to the previous record text so that
the first character of the second record overlays the continuation character in the first. Therefore, any statement element may be
split over the 2 lines. e.g.

*...,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....
 IF POS 301 = 'Character constant text that streams acr\
oss two control file records.'

The number of records over which a statement may be streamed is limited only by the maximum length of a statement.

Statement Separation

By default, SELCOPY statements are delimited by the end of a control file record. However, the statement separation character (!)
may be used to delimit (separate) SELCOPY statements specified on the same control file record or provided via SELCOPY
program parameters.

The default statement separator character is exclamation mark (!). For z/OS and z/VM CMS, this default may be set by the
CBLNAME option, Separator. However, on all systems, the default may be changed or disabled altogether, using the SEP program
environment option in the SELCNAM file or in the SELCOPY control statements.

The statement separator character is not interpreted as being the statement separation character when specified as part of a
quoted character constant or card data input.

Chapter 1. Program Elements Statement Length

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 15

Chapter 2. Program Execution

This chapter describes how to execute a SELCOPY program, the processing performed by the SELCOPY executable and the
generated output report.

Invoking the Executable

The SELCOPY executable is required to interpret control statements of a SELCOPY program.

On supported mainframe systems (z/OS and z/VM CMS) the name of this executable module is SLC. For all other operating
systems, the name of the executable is SELCOPY. For the purpose of this manual, the executable will be referenced as
SELCOPY.

This section describes the methods by which SELCOPY may be invoked in each environment.

Exploiting SELCOPY

SELCOPY programs can be general purpose applications that may be exploited from anywhere within the system. Networked file
systems are also transparent to SELCOPY programs and so may be used to process data on other systems.

SELCOPY may be executed using methods supported for any executable program. e.g. A SELCOPY program may be started from
any of the following:

A command shell prompt. (e.g. z/VM CMS, z/OS TSO, Unix/Telnet terminal or Windows Command Prompt)•
The Windows "Run" dialog.•
A batch script file.•
A z/OS batch job step.•
A CLIST or REXX procedure.•
Any program written in a language supporting program CALL.•

Locating SELCOPY

All operating systems have a method for dynamically locating a program executable if no specific location is provided as part of its
execution.

In a Windows or Unix environment the current working directory is searched before searching directories specified by the PATH
environment variable. In OS/400 the library list (*LIBL) is searched, in z/OS it is the standard program search path including the
active Link List, and in z/VM CMS all accessed mini-disks are searched.

For efficiency, the SELCOPY executable should be installed in a directory or library that is included in the default program search
path. The remainder of this publication assumes that this is the case.

SELCOPY Command

All SELCOPY command program parameter keywords, including -v, may be entered in any character case. e.g. -v is the same as
-V.

Microsoft Windows and Linux/Unix Systems:

>>-- SELCOPY -------------+-------------------------------------+------------><
 | |
 +------+--| Program Parameters |---+--+
 | |
 +- -v --------------------+

OS/400:

>>-- CALL PGM(SELCOPY) ---+--+---><
 | |
 +- PARM(' --+--| Program Parameters |---+- ') -+
 | |
 +- -v --------------------+

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 16

z/OS TSO and z/VM CMS:

>>-- SLC -----------------+--+---------><
 | |
 +------+--| Program Parameters |---+-----+
 | |
 +- -v --------------------+

z/OS TSO (Alternative):

 +- CAPS -+
 | |
>>-- CALL 'loadlib(SLC)' -+-------------------------------------+-+--------+-><
 | | | |
 +- '/ -+-| Program Parameters |-+- ' -+ +- ASIS -+
 | |
 +- -v -----------------+

z/OS Batch:

>>- //name EXEC PGM=SLC +--+-------><
 | |
 +- ,PARM=' -+--| Program Parameters |--+- ' -+
 | |
 +- -v -------------------+

Program Parameters:

 |---+--------------+--+-------------------------+--+----------------------+-->
 | | | | | |
 | +----------+ | +- -ctl statement_file --+ +- -lst report_file --+
 | v | | (3) (3)
 +-+-- parm --+-+

>---+--------------------+--+-------------------+--+----------------------+-->
 | | | (1) | | |
 +-- -log log_file --+ +-- -nam nam_mod --+ +-- -notrap -----------+
 (3) +-- -notr -------------+

>---+------------------------+---|
 | |
 | +------------------+ |
 | v (2) | |
 +--+-- ! statement --+--+

(1) Program parameter -nam is applicable only in z/OS systems.
(2) Exclamation mark (!) is the default statement separator character. This may be changed by setting the SEP program

environment option in SELCNAM.
(3) In Microsoft Windows, apostrophes (') are valid fileid characters. However, SELCOPY will strip apostrophes used to

enclose a fileid.

Program Parameter Descriptions:

-v
Outputs 2 report lines to stderr which, for z/VM CMS, z/OS TSO and Batch corresponds to FILEDEF/DD name SYSOUT.

Note that stderr output may be redirected using the -log program parameter or a redirection symbol, 2> (two greater than)
or to append to existing stderr output, 2>>.

The first is the standard output list header comprising the SELCOPY version & release, licensed organisation & location
and current date & time. The second report line comprises the build level & date of the SELCOPY release.

 SELCOPY/WNT 3.20 at CBL - Bridgend UK (Internal Only) 2013/12/10 17:30
 Build Level=001 2013/10/19 22:09 (Latest change).

parm
Identifies blank delimited parameter strings that are to be passed as input and processed by the SELCOPY control
statements.

Up to 9 parameters may be specified and referenced within the SELCOPY program by parameter variables and the
internal variable, ARG. If more than 9 parameter strings are specified, the program may access the additional parameters
via the internal variable PARM.

Chapter 2. Program Execution SELCOPY Command

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 17

Parameters must be enclosed in quotation marks (") or apostrophes (') if the parameter string contains any of the
following:

Blank characters.1.

Characters that have special significance to the executing operating system.

Beware that, in Unix systems, some special characters are interpreted despite being supplied in enclosing
quotes, e.g. backslash (\), dollar ($), quotation mark (") and grave accent (`). To prevent this, the special
character must be escaped using the escape character backslash (\).

2.

Lower case alpha characters that must not be upper cased.3.

Note that some Unix operating systems (e.g. IBM AIX and Oracle Solaris) strip a single set of enclosing quotes (quotation
marks or apostrophes) from each parameter specified via a command shell. Where this occurs, to preserve alpha
character case in command line input, the parameter strings should be enclosed within two sets of quotes, one set of
apostrophes, one set of quotation marks. e.g.

 selcopy '"./inp.test.file"' '"/tmp/output.test.file"'

 selcopy "'Wuthering Heights'" "'Emily Bronte''s Novel'"

-ctl statement_file
Identifies statement_file, the fileid of the SELCOPY program control statement file.

For Windows and POSIX systems, the directories specified by environment variable, PATH, will be searched if
statement_file is a relative file path.

If -ctl statement_file is omitted, then SELCOPY accepts control statement input from stdin which, for z/VM CMS, z/OS
TSO and Batch, corresponds to FILEDEF/DD name SYSIN. Control statements may also be provided as program
parameters (see !statement below). These control statements will be processed before statements passed via
statement_file or stdin input.

SELCOPY input via stdin is achieved using the redirection symbol less than (<) or as piped output from another source
using the pipe symbol (|). If stdin is used as control statement input, it cannot then be used as data input via a READ
STDIN operation. Therefore, specification of a control statement file via the -ctl parameter is recommended whenever
possible. See your operating system documentation for use of stdin redirection and pipes.

If no control statements are passed to SELCOPY from any source, then, in a z/OS batch environment, the job ends with
ERROR 524. In all other environments SELCOPY waits for input from the user's terminal and does not begin execution
until the control statement input is ended. Control statement input via the terminal must be ended using the end of
program indicator (composite symbol "/*" in the first column of the input) or, if no CARD input is performed, using the END
operation keyword.

-lst report_file
Identifies report_file, the fileid of the SELCOPY list (diagnostic report and printed data) output file. Printed data is output
from the PRINT and PLOG operations.

In Windows and POSIX (e.g. Linux and Unix) environments, SELCOPY will direct its list output in the following order of
precedence:

The report_file fileid specified on -lst program parameter.1.
The stdout data stream if redirection symbol greater than (> or >>) is specified.2.
A fileid identified by the SLCLST environment variable.3.
The fileid "SELC.LST" in the current directory.4.

If stdout is used for list output, then it cannot then be used as data output via a WRITE STDOUT operation.

In z/VM CMS and z/OS non-POSIX environments (both TSO and Batch), SELCOPY will direct its list output in the
following order of precedence:

The report_file fileid specified on -lst program parameter.1.
FILEDEF or DD name allocated to SYSPRINT.2.
For z/OS only, data set with DSN "prefix.SELC.LST" where prefix is the ACF user name assigned to the
executing job.

3.

For z/VM CMS only, the fileid "SELC LST A".4.

-log log_file
Identifies log_file as the destination file for all SELCOPY error messages that would otherwise be written to the terminal,
and all data logged by the SELCOPY program using the LOG or PLOG operation.

If -log log_file is omitted, then SELCOPY directs logged output to stderr which, for z/VM CMS, z/OS TSO and Batch
corresponds to FILEDEF/DD name SYSOUT. The -log program parameter is equivalent to stderr redirection using
composite symbols two greater than (2> or 2>>).

-nam nam_mod
Applicable only in z/OS systems, identifies nam_mod, the alternate name of the CBLNAME options load module to be
loaded by SELCOPY.

Chapter 2. Program Execution SELCOPY Command

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 18

If it exists, the module named CBLNAME is loaded first to establish any update to the default statement separator
character, otherwise the default of exclamation mark (!) is assumed. The alternate load module nam_mod is then loaded
to establish all other options applicable to execution of SELCOPY.

-notrap | -notr
Disable default interrupt handling by SELCOPY so that any abnormal termination event, including interruption by the user,
will be handled by the system.

This behaviour may also be achieved using the program environment option ABTRAP or TRAP.

!statement
Specifies one or more SELCOPY control statements that are to be processed before control statements input from
another source. If specified, statement program parameters must follow any other program parameter. e.g.

 SELCOPY -ctl selccomp.ctl !equ IN1 abc.fil !equ IN2 xyz.fil

Each statement must be preceded by the statement separator character, which, by default, is exclamation mark (!) but
may be set to another character using the program environment option, SEP, in the SELCNAM initialisation file. Note that,
in the Unix csh or tcsh shell, exclamation mark has special significance and so must be escaped (/!) or followed by blank
character.

If control statement input is not terminated by composite symbol "/*" as the first characters following a statement separator
character (i.e. !/*), then SELCOPY will expect input of further control statements from another source. This may be the
statement_file specified by program parameter -ctl or stdin input via file redirection, a pipe or the user's terminal.

If control statement input is terminated by a program parameter statement, then no attempt is made by SELCOPY to input
further control statements as program parameters or from any other input (-ctl statement_file or stdin).

Sample Execution

The following provides samples of SELCOPY (SLC) execution in different environments:

z/OS JCL

Execution of SELCOPY requires specification of a control statement source and an output listing destination. In a z/OS (and
z/VM CMS) environment, these default to the SYSIN and SYSPRINT ddname allocations, respectively.

Any input and output data set ddnames referenced within the SELCOPY control statements must also be allocated. e.g.

 <---+----1----+----2----+----3----+----4----+----5----+----6----+----7-
 00001 //SAMPLE1 EXEC PGM=SLC
 00002 //INPDD DD DISP=SHR,DSN=USER123.SLC.INPFILE
 00003 //OUTDD DD DISP=SHR,DSN=USER123.SLC.OUTFILE
 00004 //SYSPRINT DD SYSOUT=*
 00005 //SYSIN DD *
 00006 READ INPDD
 00007 WRITE OUTDD
 00008 /*

The SYSIN control statement input and SYSPRINT list output may be overridden using parameters -CTL and -LST respectively.
In batch, these parameters are passed via the JCL EXEC statement PARM field. Each of the -CTL and -LST parameters may
specify a ddname or data set name (DSN). e.g.

 <---+----1----+----2----+----3----+----4----+----5----+----6----+----7-
 00001 //SAMPLE2 EXEC PGM=SLC,PARM=('-CTL SLCINP -LST SLCPRT')
 00002 //INPDD DD DISP=SHR,DSN=USER123.SLC.INPFILE
 00003 //OUTDD DD DISP=SHR,DSN=USER123.SLC.OUTFILE
 00004 //SLCPRT DD SYSOUT=*
 00005 //SLCIN DD *
 00006 READ INPDD
 00007 WRITE OUTDD
 00008 /*

Use of -CTL and -LST allows SYSIN and SYSPRINT ddnames to be used by other programs executed by the SELCOPY
program via the CALL operation.

Existing input and output data sets used in the SELCOPY program need not be pre-allocated if parameter DSN is used on the
SELCOPY I/O operations. In the following sample, SELCOPY will perform a dynamic allocation for input ddname INPDD and
output ddname OUTDD for the specified data set names.

 <---+----1----+----2----+----3----+----4----+----5----+----6----+----7-
 00001 //SAMPLE3 EXEC PGM=SLC,PARM=('-CTL SLCINP -LST SLCPRT')
 00002 //SLCPRT DD SYSOUT=*
 00003 //SLCIN DD *
 00004 READ INPDD DSN='USER123.SLC.INPFILE'
 00005 WRITE OUTDD DSN='USER123.SLC.OUTFILE'
 00006 /*

Chapter 2. Program Execution Sample Execution

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 19

Since SELCOPY also accepts control statement input via the parameter string, use of -CTL or SYSIN may be omitted
altogether. This is not typical and can only be performed for brief SELCOPY programs since the input PARM field is restricted to
100 characters only.

 <---+----1----+----2----+----3----+----4----+----5----+----6----+----7-
 00001 //SAMPLE4 EXEC PGM=SLC,PARM=('-LST SLCPRT !READ INPDD DSN="USER123.SLC.
 00002 // INPFILE" !WRITE OUTDD DSN="USER123.SLC.OUTFILE" !END')
 00003 //SLCPRT DD SYSOUT=*

z/OS TSO/E

Like z/OS batch, SELCOPY execution in a z/OS TSO/E (or z/VM CMS) environment defaults control statement input and listing
output to be SYSIN and SYSPRINT respectively. However, when running SELCOPY from a CLIST or REXX procedure, use of
the -CTL and -LST parameters is preferrable since it removes the requirement of having to allocate and subsequently free
SYSIN and SYSPRINT ddnames.

The following sample REXX procedure accepts a DSN or library member input parameter and executes SELCOPY with the
-CTL and -LST parameter arguments assigned to values based on a standard library structure.

 <---+----1----+----2----+----3----+----4----+----5----+----6----+----7-
 00001 /* REXX */
 00002 parse arg inctl
 00003
 00004 address TSO
 00005 pref = sysvar("syspref") /* TSO Prefix */
 00006
 00007 if pos(".",inctl) = 0 /* No dot => member name. */
 00008 then do; olist = pref".SLC.LISTING("inctl")"
 00009 inctl = pref".SLC.CTL("inctl")"
 00010 end
 00011 else olist = pref".SLC.LISTING(SLCLIST)"
 00012
 00013 "SLC -CTL "inctl" -LST "olist

SELCOPYi

SELCOPYi interactive utility component of the SELCOPY Product Suite for z/OS and z/VM CMS includes the facility RUNSLC
for foreground execution of the SLC program module.

Control statements are read from the focus window text edit view (with or without unsaved alterations) and the resultant list
output displayed in a new text edit view. The list output is assigned a temporary DSN but not saved.

Execution of primary command RUNSLC at the command prompt of a text edit view will start the facility. e.g.

 Command> RUNSLC Scroll> Csr
 <---+----1----+----2----+----3----+----4----+----5----+----6----+----7-
 00001 ** NBJ.CTL(SSTEMP) *** L=001 --- 2016/02/22 11:25:33
 00002
 00003 read indd dsn='CBL.CBLI320.RS32002.DB2.DBRMLIB' dir
 00004 print

SELCOPYi also supports execution of programs in the TSO environment directly from any command prompt. Therefore, the
SLC program may be executed at any SELCOPYi command prompt.

Furthermore, in combination with the Action Key facility supported by SELCOPYi text edit views, SLC commands may be saved
in text files for subsequent execution. The following sample command text may be entered in any data set or library member
(e.g. as comment data in a JCL batch job member). When edited using SELCOPYi, a command may be executed by
positioning the cursor on the text and pressing the Action key (default <F4>).

 <TSO SLC -CTL CBL.SELCOPY.CTL(SQ12836) -LST CBL.SELCOPY.SYSPRINT(SQ12836)

 <TSO SLC -LST * !read 'USER123.SELCOPYI.CMX' nordw !print stopaft=22 !end

UNIX/Linux Shell

The command selcopy may be executed at any shell prompt or from a shell script.

By default, SELCOPY will accept control statement input from the stdin stream and direct its list output to stdout. Use of
parameters -ctl and -lst will nominate the fileids to be used in place of stdin and stdout respectively. e.g.

 selcopy -ctl ~/selcopy/ctl/ssfstr -lst ~/selcopy/lst/ssfstr

Using -ctl and -lst will allow data streamed from stdin and to stdout to be used on SELCOPY I/O operations.

If no input control file is specified, then SELCOPY waits for input from the default stdin input (i.e. the users terminal). If no list
output file is specified, output is written to the file specified by environment variable SLCLST or SELC.LST if $SLCLST is null.

The following example assigns environment variable SLCLST which is used by the SELCOPY execution that follows. The
SELCOPY input uses abbreviated operation and parameter keywords to reduce the length of the command syntax. It also

Chapter 2. Program Execution z/OS JCL

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 20

contains special characters "!" (exclamation mark) to separate the control statements and "'" (apostrophe) to delimit quoted
character constants. Since these characters have significance in the command shell, they must be escaped using the shell
escape character "\" (backslash) in order to avoid interpretation before being passed to SELCOPY.

The program itself will list all files in the user's home directory, input text from these files and report all lines containing the
character string "user".

 export SLCLST=~/selcopy/sstemp_lst
 selcopy \!rd \'%HOME%/*\' dd \!if dir \!t log \!t gg \!if p any = \'user\' \!t log \'Data: \' fr 1 \!e

Microsoft Windows Shell

The command selcopy may be executed at any Microsoft Windows command shell, Visual Basic or command shell script.

Like SELCOPY on UNIX platforms, control statement input is read from the stdin stream and list output is directed to stdout by
default. Parameters -ctl and -lst will nominate the fileids to be used in place of stdin and stdout respectively.

Also, stdin input from a terminal is used if no input control file is specified, and stdout output is written to the fileid assigned to
environment variable SLCLST (default SELC.LST) if no list output file is specified.

The following example demonstrates setting the current directory prior to executing a SELCOPY that references relative fileid
paths.

 cd /d "c:\Documents and Settings\NBJ\selcopy\"
 selcopy -ctl ctl\ssinv21_ctl.txt -lst lst\ssinv21_lst.txt

Program Environment

Every execution of a SELCOPY program is subject to environment options which govern the operation of the SELCOPY
executable. e.g. Statement separator character interpretation and formatting of SELCOPY's list file (diagnostic report and printed
data) output.

Program environment options may be specified for individual SELCOPY programs but system-wide defaults, affecting all
SELCOPY programs, may also be configured by the systems programmer, usually as part of the SELCOPY product install process.

This section focuses on configuration of system-wide defaults using the SELCNAM initialisation file and, for mainframe platforms
only, the CBLNAME options module.

CBLNAME

Applicable to both the SELCOPY and SLC executables on mainframe systems, the CBLNAME option module is assembled from a
configured assembler language source file using the assembly software provided as part of the operating system.

The CBLNAME assembler source file comprises a single, CBL supplied macro call with parameters that define many, but not all of
the SELCOPY environment options. The most important option is the name of the SELCNAM initialisation file (data set).

Since CBLNAME defines system wide options, any update will affect all SELCOPY programs and should be restricted to authorised
users only.

For full information on each CBLNAME option and for direction in updating the CBLNAME module in a z/OS system, see the
"SELCOPY Product Suite Customisation Guide".

To update and re-assemble CBLNAME in z/VM CMS, see the "SELCOPY Product Suite Install Guide for VM/CMS and VM/VSE
Systems".

CBLNAME is the default name of the options module. However, for z/OS systems only, an alternative name may be specified when
SELCOPY is started using the -nam nam_mod program option.

CBLNAME SLC Options

The following CBLNAME options are recognised by the SLC executable. Other options in CBLNAME apply to other executable
elements of the SELCOPY Product Suite (i.e. SELCOPY, SELCOPYi and CBLVCAT).

SNamDsn='selcopy.nam'
Identifies selcopy.nam, the name of the default SELCOPY environment initialisation file (data set) that gets allocated to
FILEDEF/DD name SELCNAM. See SELCNAM or SELCOPY.NAM for description of this file.

Chapter 2. Program Execution UNIX/Linux Shell

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 21

This name may be overridden by allocating FILEDEF/DD name SELCNAM to a different file (data set) name prior to
execution of SELCOPY.

If SNamDsn is not set and SELCNAM has not already been allocated, then selcopy.nam defaults to SELCOPY NAM in
z/VM CMS and prefix.SELCOPY.NAM in z/OS systems, where prefix is the ACF user name assigned to the executing
job.

Separator='char'
Separator specifies the default statement separator character, char.

This option may subsequently be overridden by the program environment option SEP, specified in SELCNAM or within
the SELCOPY program control statements. The default is exclamation mark (!).

SOpsMsg=0 | ALL | NOSEL | NOCTL | NONE
Determines which, if any, of SELCOPY error message classes are logged to the log output file or SYSOUT. Default
SYSOUT is the z/VM CMS console, the z/OS TSO console or z/OS operator console.

The default value is 0 (or ALL) indicating that all messages are logged.

SBannerMsg=YES | NO
Determines whether or not on startup of SELCOPY, the banner message is logged to the log output file or SYSOUT.

This option may subsequently be overridden by the program environment option (NO)BANNER, specified in
SELCNAM or within the SELCOPY program control statements.

The default value is NO indicating that the banner message is not logged.

SRDW=YES | NO
Determines whether or not input record data belonging to a z/OS RECFM=V data set includes the 4-byte Record
Descriptor Word (RDW) prefix.

This option may subsequently be overridden by the program environment option (NO)RDW, specified in SELCNAM or
within the SELCOPY program control statements.

The default value is YES indicating that the RDW is included.

SNotFoundMsg=YES | NO
Determines whether or not the following, 25 character data message is moved to the input data field following an
unsuccessful direct read by key or record number.

 --- KEY/REC NOT FOUND ---

If this input message is suppressed, the program will have to test for the appropriate return code from the READ
operation.

The default value is YES indicating that the message data is returned.

SPrtStopAft=intval
Specifies intval, a positive integer value which is used as the default STOPAFT value applied to all PRINT or PLOG
operations only. i.e. Each PRINT and PLOG operation within a SELCOPY program will be executed no more than
intval number of times in the same run.

This option may subsequently be overridden by specification of keyword parameter STOPAFT on individual PRINT
and PLOG operations within the SELCOPY program control statements.

The default value is 0 indicating no limit for PRINT and STOPAFT 50 for LOG.

SCPCmds=YES | NO
Applicable only to z/VM systems, SCPCmds determines whether or not CP command streams may be executed from
SELCOPY program control statements using the CP operation.

The default value is YES indicating that CP commands may be executed.

SELCNAM (SELCOPY.NAM)

In z/OS and z/VM systems, the SELCOPY initialisation file is referenced as SELCNAM. On all other systems, it is referenced as
SELCOPY.NAM, the actual fileid of the file processed by SELCOPY. For the purpose of this manual, the SELCOPY initialisation file
will be referenced as SELCNAM.

In z/OS and z/VM systems, the SELCNAM file is identified as being the data set allocated to the FILEDEF/DD name SELCNAM. If
SELCNAM is not already allocated, it gets automatically allocated to the data set name specified by CBLNAME option SNamDsn. If
SNamDsn is unset, a DSN of "tsopfx.SELCOPY.NAM" or "SELCOPY.NAM" is used. In all other systems, the SELCOPY.NAM file
must exist in the file search path.

SELCNAM is an editable text file and may include only comment text and SELCOPY OPTION operations that define program
environment options. Because updates to SELCNAM environment options affect exceution of all SELCOPY programs, it should be
protected against unauthorised read-write access.

Chapter 2. Program Execution CBLNAME SLC Options

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 22

If a SELCNAM record contains the end of program input composite symbol (/*) in column 1, then records that follow this indicator
are not read and SELCOPY processing continues with program control statement input.

Update of SELCNAM in a z/OS environment should not be performed on the active SELCNAM data set due to an exclusive ENQ
being placed on the data set by the system editor. Appropriate procedures for updating SELCNAM in z/OS and z/VM CMS systems
are detailed in the "SELCOPY Product Suite Customisation Guide" and the "SELCOPY Product Suite Install Guide for VM/CMS
and VM/VSE Systems" respectively. Similar care should be taken when updating SELCNAM in any system where exclusive file
locking occurs when editing a file. This will result in unsuccessful execution SELCOPY programs due to failure to open the
SELCNAM file for input.

SELCNAM SLC Options

See operation keyword OPTION for detailed information on each of the program environment options.

The following SELCNAM program environment options are mandatory and must reference valid entries as supplied by Compute
(Bridgend) Ltd:

SITE Specifies the licensed company name and geographical location.

RANGE Specifies the licensed, operational date range.

PASS Specifies the unique 8-byte password expressed in hexadecimal.

The following program environment options may also be included in SELCNAM:

ABTRAP
TRAP | NOTRAP

Enable or disable SELCOPY's Interrupt handling.

BANNER | NOBANNER
BAN | NOBAN

Enable or disable logging of SELCOPY's banner message to the log output file or stderr
(SYSOUT) on startup.

CALLTYPE Controls the CALL operation linkage for calling external routines.

CBLSQLOG
SQLLOG
LOGSQL

Identifies an output file used specifically to log calls to the ODBC driver manager.

CONTMAX Extends the maximum length of a control statements.

DATAWIDTH Controls the width of printed data in SELCOPY's list output.

DEFAULTFP
DEFFP
DFLTFP

Controls the format of a floating point field if not explicitly specified.

DEFDIR Identifies the default current, hierarchical file system working directory.

DUMPALL Enable or disable print of second and subsequent, duplicate TYPE=D (dump) format print lines.

DUMPENC Identify the characters to be used to delimit the character representation of TYPE=D (dump)
format printed data.

ENVFAIL Specifies the action to be taken when environment variable or parameter variable substitution fails
because the variable has no assigned value.

ENVVAR | NOENVVAR Enable or disable environment variable or parameter variable substitution.

ERRLIM
ERRMAX

Determines the maximum number of control statement errors that are reported before control
statement analysis stops and the program is terminated.

FILL
PAD

If a user work area buffer is defined (OPTION WORKLEN), then this option identifies the default
character to be used to overwrite residual data. This is data that is left in the buffer when an input
record is of a shorter length than that of the previous record read by the same READ operation.

KEYENC | NOKEYENC Applicable to the SELCOPY for Windows keyboard input feature, KEYENC identifies the Window
special key name delimiter characters. Alternatively, special key name processing may be
disabled.

Chapter 2. Program Execution SELCNAM (SELCOPY.NAM)

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 23

KEYENCERR |
NOKEYENCERR

Applicable to the SELCOPY for Windows keyboard input feature, this option enables or disables
RC=8 set when a Windows special key is not recognised by SELCOPY.

LIBNAME Identifies the name of the default library shared object in which routines called by a SELCOPY
program may be found in option CALLTYPE DIRECT is in effect.

MFC Indicates that all processing of VSAM files in SELCOPY programs is to use the Micro Focus
VSAM interface.

ODBCPASS
OPASS

Specifies the default password supplied by SELCOPY programs for user authorisation when
attempting to access protected objects (databases) via ODBC.

PAGEDEPTH Controls the maximum number of lines per page in SELCOPY's list output.

PAGEWIDTH Controls the width of page headers and TYPE=D (dump) format printed data in SELCOPY's list
output.

PRINTABLE Identifies hexadecimal code points of characters within the local code page that are to be treated
as being printable by SELCOPY for PRINT and PLOG output.

PRTCTL | NOPCTL Enable or disable output of SELCOPY program control statements in the diagnostic report portion
of the SELCOPY list output.

NOPSUM
NOPTOT

Disable output of SELCOPY program execution summary information in the diagnostic report
portion of the SELCOPY list output.

NOPRINT
NOP

Disable output of both the SELCOPY program control statements and the execution summary
information (i.e. all diagnostic information) in the SELCOPY list output.

RDW | NORDW Enable or disable inclusion of the 4-byte Record Descriptor Word (RDW) prefix in a record read
from a RECFM=V, RECFM=V2 or RECFM=MFV file.

SEP Identifies the statement separator character.

SORT | NOSORT
SORTDIR

For hierarchical file systems only, this option identifies the sort order of input directory records,
and so the order of input files, returned by a READ DIR or DIRDATA operation.

SSN Identifies the ODBC Data Source Name assigned to the default data object (database) accessed
by SELCOPY programs via ODBC.

SUB | NOSUB
SUBDIR

For hierarchical file systems only, this option identifies the number of levels of nested
sub-directories, belonging to the input directory, that are to be processed by a READ DIR or
DIRDATA operation.

TABSIN For RECFM=U input only, this option identifies the tab interval which indicates the position to
which text following an input tab character (x'09') will be shifted.

UNPRINTABLE Identifies hexadecimal code points of characters within the local code page that are to be treated
as being unprintable by SELCOPY for PRINT and PLOG output.

USER Specifies the default userid supplied by SELCOPY programs for user authorisation when
attempting to access protected objects (databases) via ODBC.

SELCMSG (SELCOPY.MSG)

The text of all control statement analysis and selection time messages set by SELCOPY is obtained from a single plain text file.

In z/OS and z/VM systems, the SELCOPY message file is referenced as SELCMSG. On all other systems, it is referenced as
SELCOPY.MSG, the actual fileid of the file processed by SELCOPY. For the purpose of this manual, the SELCOPY message file
will be referenced as SELCMSG.

In z/OS and z/VM systems, the SELCMSG file is identified as being the data set allocated to the FILEDEF/DD name SELCMSG. If
SELCMSG is not already allocated, it gets automatically allocated to the data set name specified by CBLNAME option SNamDsn
except that the last 3 characters of the DSN are replaced by "MSG". If SNamDsn is unset, a DSN of "tsopfx.SELCOPY.MSG" or
"SELCOPY.MSG" is used. In all other systems, the SELCOPY.MSG file must exist in the file search path.

If the SELCMSG file is missing or cannot be found, then the text of any message returned by SELCOPY will be: Error Number
not in selcopy.msg file

Chapter 2. Program Execution SELCNAM SLC Options

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 24

Program Processing
A SELCOPY program is started using the SELCOPY executable. SELCOPY's processing comprises the following 5 steps:

Establish licence details and program environment.1.
Control statement analysis and interpretation.2.
Output file open.3.
Statement selection and execution.4.
End of job file close.5.

The steps are performed in the order specified and are described in this section.

Establish Environment

SELCOPY's initial step is to read the SELCNAM file to verify licence details and then to process other OPTION operations to
establish the program execution environment.

For z/OS and z/VM CMS systems, reading the SELCNAM data set involves first loading the CBLNAME module to discover the
location of the SELCNAM data set, and then dynamically allocating the data set to FILEDEF/DD name SELCNAM for subsequent
file open. Certain environment options are also initialised from CBLNAME, prior to processing SELCNAM. See Program
Environment for details.

If licence details provided via the SITE, RANGE and PASS options are not consistent with the values supplied by Compute
(Bridgend), then the following messages are returned in the logged output and/or the SELCOPY list diagnostic report.

 *** ERROR 153 *** INVALID OPT IN "SELCOPY.NAM" FILE

 *** ERROR 124 *** CHECK EXPIRY DATE

In this case, control statement analysis is still performed for the SELCOPY program, however, no subsequent steps are performed
due to the control statement errors.

If any other invalid statement exists in the SELCNAM file, the following message is logged but processing continues. Note that nnn
is the record number within SELCNAM at which the error was detected.

 Syntax err in selcopy.nam :nnn

Control Statement Analysis

Before SELCOPY executes the supplied control statements, they are first analysed to detect any syntax errors and to process
program environment operations including options that override system defaults.

Control statement analysis is performed on each statement read sequentially from start to finish. This order is not affected by any
internal sub-routine calls or GOTO operations.

Control statements are analysed one at a time and are each converted into an internal control block. Program environment
operations, e.g. OPTION and EQU, are converted and then executed immediately and so do not affect control statements that have
already been analysed. e.g. An equated symbol substitution will not occur for occurrences of the symbol in statements for which
analysis processing has already occurred.

The following identify the processing performed during control statement analysis.

Selection Identifiers

All control statements that execute an operation or sub-operation, or perform a variable assignment are assigned a unique
selection identification number. Exceptions to this are program environment operations (e.g. EQU, DECLARE, OPTION), the IF
logic operation and the AND and OR logic sub-operations.

The selection identifier assigned to a statement is the next integer value in an ascending sequence of integers starting at 1.

The selection number is displayed next to the control statement in the SELCOPY list diagnostic report and is used to reference
the statement in the SEL-ID column of the SELCOPY program execution summary information.

Chapter 2. Program Execution SELCMSG (SELCOPY.MSG)

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 25

Variable Substitution

Identifiers within a control statement that correspond to substitution variable names are replaced by the assigned value before
syntax validation of the statement is performed.

If a substitution variable has no equivalent assigned value, then the following occurs:

For equated symbols, no substitution is performed and syntax validation on the statement is performed as is. Note that
an equated symbol value will not exist in the case where a statement which references the equated symbol is
processed before the statement containing its definition (EQU operation).

•

For parameter variables and environment variables, the action defined by the ENVFAIL option.•

File Open

Statements containing a READ or WRITE operation on a file with no explicit or implied DEFER parameter, will first perform any
required dynamic allocation for the specified fileid (DSN) and then open the file for input, input for update or output processing
as required by the operation. If DEFER is in effect, the open of the input or output file is deferred until the statement is executed
at selection time processing.

Input files are opened immediately following successful validation of the statement containing the READ operation. Output files
are opened at the end of control statement analysis, once all control statements have been processed with no resulting errors.

By default, SELCOPY WRITE output to non-VSAM files where parameter APPEND is omitted will re-initialise the file so that the
file size is zero before writing new data. Therefore, delaying the open of output files until selection time processing is about to
begin ensures that data that may already exist in the output files is preserved if the SELCOPY program fails to execute.

List input, read via a READ LIST operation, is generated whenever the open is executed. Declaration and open of table cursors
via ODBC for READ and WRITE operations that are to be performed on data base tables, is always deferred until selection time
processing. A WRITE operation that performs window keystroke output does not require an open.

Note that file open is deferred for a file if any of the following is true:

Parameter DEFER is specified on the first READ operation or any WRITE operation that specifies the file name.1.

Dynamic allocation is to be performed for the file name and the fileid on the operation is specified as a field definition or
a declared variable.

2.

For input, a statement containing an OPEN or CLOSE operation for the file name is processed before the statement
containing the first READ operation for the same file.
For output, a statement exists which contains an OPEN or CLOSE operation for the same file name specified by the
WRITE operation. The OPEN or CLOSE statement may be processed after the WRITE statement.

3.

Prime Input

During statement analysis, the prime input is determined as being the file or database result table specified by the first READ
statement, regardless of whether it is opened at control statement analysis or the open is deferred until selection time
processing.

The concept of a prime input is used by SELCOPY execution to determine the natural end of SELCOPY selection time
processing. The file name assigned to the prime input is also the default used when a file name argument is not specified on an
IF operation that tests for EOF, INCOUNT, DIR or DATA.

By default, SELCOPY selection time processing finishes and end of job processing is triggered when a READ operation is
performed for the prime input and there are no more records left to read. e.g. the last record has already been read for forward
sequential input.

If no READ operation statements exist then no prime input is established and the program ends following execution of the last
selected control statement.

Control Statement Errors

Control statement analysis errors may be flagged for individual control statements that are determined to be invalid or, in the
case of READ and WRITE operations, for which a file allocation or open has failed.

If an error is flagged for a control statement the following occurs:

If output of SELCOPY program control statements to the diagnostic report portion of the SELCOPY list output has
been disabled (option NOPCTL or NOPRINT), then it is re-enabled. All subsequent statements processed by control
statement analysis will be written to the SELCOPY list.

1.

The control statement in error is written to the SELCOPY list.2.

Chapter 2. Program Execution Variable Substitution

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 26

If possible, the offending identifier, constant or operator element within the statement text is identified by an asterisk (*)
in the SELCOPY list line immediately following the statement.

3.

The relevant control statement error message is written to the SELCOPY list and, if the first error encountered, it is
also written to the log output (stderr/SYSOUT). Note that output of error messages to log output on z/OS and z/VM
platforms may be controlled by CBLNAME option SOpsMsg.

4.

The control statement error count is incremented by 1.5.

SELCOPY return code 52 is set.6.

If the count of control statement errors reaches the maximum permitted, then control statement analysis terminates immediately
and end of job processing begins. The error count maximum is determined by the ERRLIM (or ERRMAX) option which has a
default setting of 10. Similarly, end of job processing is invoked following normal completion of control statement analysis if any
errors have been flagged.

Individual control statement errors are described in Control Statement Analysis Error Messages.

Selection Time Processing

If no statements have been flagged as being in error and all necessary file allocation/open has been performed successfully, then
selection time processing begins.

Selection time processing involves the systematic selection and execution of the SELCOPY statements which includes resolution
of current values for variables and expressions specified as parameters to operations.

By default, control statements are selected in order of ascending selection identifier. This is common in only very simple programs
that do not involve conditional operations or logic flow operations that perform a direct branch to a label statement. In most
SELCOPY programs, the default order of control statement selection is influenced by logic flow operations (e.g. GOTO, DO) and
the result of logical operations/sub-operations IF, AND, OR which govern the selection of conditional sub-operations THEN, ELSE.

Implied Loop

If a prime input exists, then, following execution of the last selected input control statement, selection processing loops to
continue its processing from the first selectable control statement. This behaviour is equivalent to that of the GOTO GET
operation. Note that the first selectable control statement may be a conditional operation subject to IF, AND, OR.

This processing continues until no further records are read from the prime input either because end of file (or result table) is
flagged or because STOPAFT parameter thresholds have been satisfied for all prime input READ operations or all output
(PRINT, LOG, WRITE) operations.

This loop processing may be controlled within the SELCOPY program using an IF/AND/OR EOF condition to test the end of
prime input and so perform additional processing before executing the EOJ operation to force end-of-job. Similarly, GOTO EOJ
may be executed on any statement to end the execution before all prime input records have been read.

Note that there is no implied loop if no prime input exists, in which case selection time processing ends after the last selected
control statement has been executed.

Selection Time Errors

Selection time errors may be flagged for individual control statements that fail to execute properly.

Selection time errors are usually errors that cannot be established by SELCOPY's control statement analysis and only occur
when an attempt to execute the statement is performed. e.g. Failure to dynamically allocate a file due to an invalid fileid having
been specified in the DSN field definition.

If an error is flagged at selection time the following occurs:

The relevant selection time error message lines and any accompanying dump print are immediately written to the
SELCOPY list. These message lines will appear before the diagnostics summary block.

The message is prefixed by the selection identifier number of the statement on which the error occurred. e.g.
(SEL---12) indicates the statement assigned the selection identifier number 12.

If the error occurs on an IF, AND or OR operation, then the selection identifier used is that of the first THEN
sub-operation statement that follows. Furthermore, the selection identifier is displayed with only 1 preceding hyphen
(-). e.g. (SEL -12) refers to the IF, AND or OR operation that occurs immediately before the THEN statement
assigned the selection identifier number 12.

1.

The same selection time error message lines are written to the SELCOPY log output (stderr/SYSOUT). The message
is prefixed by the SELCOPY version and release. e.g. SELCOPY/WNT 3.20.

2.

Chapter 2. Program Execution Control Statement Errors

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 27

Additional messages may also have been written to the log by SELCOPY's internal functions for diagnostic purposes.
e.g. The following message, logged by internal function cblfio, provides more accurate information as to the reason for
the I/O error:

 cblfio: WinErr=0161 The specified path is invalid. (Input) F="fileid"

Note that output of error messages to log output on z/OS and z/VM platforms may be controlled by CBLNAME option
SOpsMsg.

Selection time processing terminates immediately and end of job processing begins.3.

Individual selection time errors are described in Selection Time Error Messages.

End of Job Processing

Before the SELCOPY execution terminates, the following end of job tasks are performed:

Free storage obtained by SELCOPY during execution.1.

Free any dynamically allocated files.2.

Close all input and output files and close all ODBC connections.3.

For z/OS and z/VM only, drop any lists generated by READ LIST operations.4.

Write the diagnostic summary block to SELCOPY list.5.

Write any non-zero return code warning message to the SELCOPY list which may include the selection identifier of the
first statement in error.

6.

Write the standard SELCOPY report footer lines to SELCOPY list.7.

Close the SELCOPY list and SELCOPY log output.8.

SELCOPY List Output
By default, the SELCOPY program list output contains both diagnostic information and any text printed by the SELCOPY program
using the PRINT or PLOG operations.

The destination of the SELCOPY list output is as described by the SELCOPY command -lst parameter in section "Invoking the
Executable".

On Windows and Unix systems, list output is of undefined record format (RECFM=U) where applicable print control characters,
carriage return (x'0D'), line feed (X'0A') and form feed (x'0C') are used to control the formatting of text output.

On z/OS and z/VM systems, list output is of record format VBA which uses standard mainframe ASA print control characters to
control the formatting of the text output. Therefore, when browsing or editing the list output generated on these systems, the first
column of the display contains the ASA characters (1, 0 or b) and does not constitute part of the SELCOPY list output text.
Likewise the list output page width, as defined by the PAGEWIDTH option, does not include the ASA column.

SELCOPY list output is organised in pages of specific page depth as defined by the PAGEDEPTH option. Each page has
configurable header lines and, if not suppressed by option NOPRINT, the last page ends with standard footer lines.

The line number within the current page of the last line written to the list is maintained by internal variable, LINE. Where the value
of LINE is equal to the current page depth value or if assigned a value lower than its current value, then the next output to the list
will start a new page and the outputted text will be written immediately following the new page's header lines.

Chapter 2. Program Execution Selection Time Errors

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 28

SELCOPY/WNT 3.20 at CBL - Bridgend UK (Internal Only) 2014/01/24 15:20 PAGE 1
--- ---------------- --------

 option sortdir=n subdir=0 datawidth=80 pagewidth=110

 ** c:\nbj\examples\dd01_ctl.txt *** L=002 --- 2014/01/24 15:20:00 (L05)
 *
 * SELCOPY to generate a log of activity on a specific FTP server.
 * 1. Read multiple syslog files whose fileids match a specified fileid mask.
 * (Fileids are sorted by date descending, with sub directories excluded.)
 * 2. Limit the number of input records processed to be 5,000.
 * 3. At the start of each log file, write the fileid to the output file
 * following a "***" marker.
 * 4. Write only records that contain the specified literal strings.

 1. read indd dsn="c:\hst\log\syslog\2013*.rt1" dirdata stopaft 5000

 if dir ** File directory records.
 2. then write outlog dsn="c:\tmp\ftp_activity.txt" from "*** " from 60
 3. then goto get * Return to top of main processing loop.

 ** File data records.

 if pos any = "dst=172.168.1.100" * Sets @ pointer at the first match in the data.
 and pos @+58 = "dst_port=21" * Test fixed offset from the @ pointer position.
 and pos 1, @ = "src=" * Sets @ pointer at source IP address.
 4. then write outlog
 5. then print from @, @+79 stopaft 5 * Print text of interest.

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 59 1 5 src=95.64.37.10 srcname=95.64.37.10 src_port=80 dst=172.168.1.100 dstname=172.16 695
 673 2 5 src=173.254.28.40 srcname=173.254.28.40 src_port=80 dst=172.168.1.100 dstname=17 699
 183 3 5 src=95.64.37.10 srcname=95.64.37.10 src_port=80 dst=172.168.1.100 dstname=172.16 695
 2825 4 5 src=161.69.13.21 srcname=161.69.13.21 src_port=443 dst=172.168.1.100 dstname=172 698
 2826 5 5 src=161.69.13.21 srcname=161.69.13.21 src_port=443 dst=172.168.1.100 dstname=172 698
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8

SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 5,000 READ INDD 2048 2046 U 5 C:\hst\log\syslog\2013*.rt1
 *EOF*NOT*REACHED*
 2 5 WR OUTLOG 2048 713 U 13 C:\tmp\ftp_activity.txt
 3 5
 4 8 WR OUTLOG 2048 713 U 13 C:\tmp\ftp_activity.txt
 5 5

WARNING 4 = RETURN CODE FROM SELCOPY

 ** SELCOPY/WNT 3.20.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 17 Jul 2014 **

Figure 1. Sample SELCOPY List Output.

SLCLST Environment Variable

For Windows, Unix and OS/400 operating systems, the environment variable SLCLST may be set to identify the default fileid to
which SELCOPY list output is written when no -lst program option is specified on the SELCOPY command. Note that Unix systems,
for which names are case sensitive, must assign the variable name in upper case.

The fileid assigned to SLCLST will override the SELCOPY default, defined as being fileid "SELC.LST" in the current working
directory. Sample commands for setting environment variable SLCLST in each supported system follow:

Windows command shell

 set SLCLST=c:\tmp\s.lst

Unix Bourne or Korn shells (sh, bash or ksh)

 export SLCLST=/home/nbj/selc_list

Unix C shell (csh or tcsh)

 setenv SLCLST /home/nbj/selcopy_list

OS/400
 ADDENVVAR ENVVAR(SLCLST) VALUE('/nbj/slst')

Chapter 2. Program Execution SELCOPY List Output

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 29

Header Lines

Each page of the SELCOPY List output begins with 3 header lines:

The header text which includes a title in addition to the current date, time and page number.1.
A line containing only hyphen/minus symbols (-) that underline text in the first header line.2.
A blank line.3.

The existence of these lines means that the value assigned to internal variable LINE will never be less than 3.

The header title is left adjusted within the first header line so that it occupies the first printable character. Note that ASA characters
occupy column 1 for z/OS and z/VM CMS list output. The remaining group of header line items (current date, time and page
number) are right adjusted at the column value specified by option PAGEWIDTH.

Note that the width of the page number value is 4 characters. If >9999 pages are written to the SELCOPY list output, the page
numbers of pages following page 9999 are displayed as 4 asterisks (****).

The default SELCOPY header title is as follows:

 SELCOPY/xxx n.nn at site_name

Where:

xxx is a 3 character abbreviation representing the operating system as defined by generic terms in "Documentation
Notes." e.g. SELCOPY/WNT implies SELCOPY for Windows.

•

n.nn is the SELCOPY release. e.g. 3.20•
site_name is the company name and location as defined by the SITE option in the SELCNAM (SELCOPY.NAM) file. e.g.
Compute (Bridgend) Ltd - Bridgend UK

•

This default may be overridden during control statement analysis using the HEAD option or the HEAD parameter of the REPORT
operation. During selection time processing, the header title may be updated using internal variable, HEAD.

Note that, because lines are written to the SELCOPY list output following analysis of the first control statement, then, unless the
first statement sets the header title, then the title displayed on the first output page header will be the SELCOPY default.

If any control statement performs a TYPE=S (System) print operation, then SELCOPY list page formatting, including output of page
headers, is suspended until end of job processing is started.

Control Statements

Unless options NOPRINT or NOPCTL are set, control statements are written one at a time to the SELCOPY list output as they are
processed by control statement analysis.

If a selection identifier number has been assigned, it appears right-justified with a trailing period (.) in the first 7 characters of the
output record containing the control statement. Otherwise, the first 7 characters contain blanks. The text of the control statement
itself is indented so that it starts in column 10 of the list output record.

If desired, OPTION operation statements with keywords PRTCTL or NOPCTL may be interspersed throughout a SELCOPY
program to determine whether or not the control statements that follow the OPTION statement are included in the diagnostic
output. PRTCTL switches on control statement output, NOPCTL switches it off. By default, PRTCTL is in effect and so all
statements of the control statement input source, including comment text and blank lines, are written to the SELCOPY list.

If a control statement analysis error control statement analysis error occurs, then control statement printing is reactivated if
NOPRINT/NOPCTL is in effect and the appropriate error highlighting and message text is written immediately following the
statement in error. e.g.

 2. PRINT This will give a control statement error.

 *** ERROR 042 *** I/O LIT MUST BE IN QUOTES / FROM MISSING

The maximum number of control statement analysis errors reported in the SELCOPY list is determined by the ERRLIM option value
(default 10).

A statement that follows the statement separation character (!) is processed after the statement that occurs immediately before it.
Consequently, the separator character is removed and the statement that follows is written to a new line of the list output but further
indented so that it occurs at the same offset as it does within the input record. e.g.

 read indd !print * Print input records.

The SELCOPY list output:

 1. read indd
 2. print * Print input records.

Statements that span more than one input record using the statement continuation character (\) occupy the same number of lines in
the SELCOPY list output. The continuation character itself is preserved in the statement list output.

Chapter 2. Program Execution Header Lines

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 30

For the purpose of improved readability, additional blank lines are written to the list output. e.g. A blank line is written before each
statement containing an IF logical operation and before the statement assigned the first selection identifier, and two blank lines are
written after the last control statement processed.

Print Block

Any PRINT or PLOG operation executed during selection time processing will write text to the SELCOPY list output following the
control statement diagnostic output but before the summary block.

The type of printed output, as specified by the TYPE parameter, determines the format of the data written to the list. For all
SELCOPY print output, except TYPE=S (System), the first execution of a PRINT or PLOG operation for the current list page will
write the 3 standard print block header lines as follows:

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0 ------

When no further text is to be printed or before starting a new list page, the standard print block footer line is written. This comprises
a scale of length equal to the datawidth, located immediately under the printed text. This scale contains dots/periods (.) for each
character position that is not a multiple of 5, a comma (,) for character positions that are a multiple of 5 but not a multiple of 10, and
numbers 0 to 9 representing character positions at an interval of 10.

 ,....1....,....2....,....3....,....4....,....5

Unless otherwise stated, numeric values reported in the print block which overflow the allotted column field width will be reported as
a number of asterisk symbols (*) equal to the width of the column field.

INPUT RECNO
Identifies the record or row number of the prime input at the time the print operation occurred. If the prime input has
more than one input source (i.e. READ with a CAT sub-operation or the prime input gets re-opened with a different
fileid) the record number is reset for each input source. Note that a reset does not occur where a prime input is
identified by a z/OS ddname which is allocated to a concatenation of data sets.

The INPUT RECNO column starts in record position 1, has a width of 9 characters and both the column header text
and column values are right adjusted within the column area.

SEL TOT
Identifies the execution occurrence of the print operation that generated this line of printed text. e.g. a value of 4 would
indicate the 4th execution of this particular PRINT or PLOG operation within the current program execution. A count is
maintained for each occurrence of a PRINT/PLOG selection within the SELCOPY control statements.

The SEL TOT column starts in record position 10, has a width of 6 characters and both the column header text and
column values are right adjusted within the column area.

SEL ID.
The selection identifier number assigned to the PRINT or PLOG operation that produced the line of printed output.

The SEL ID. column starts in record position 16, has a width of 4 characters and both the column header text and
column values are right adjusted within the column area.

Scale
Applicable only to print output other than TYPE=D (Dump) and TYPE=S (System), a decimal scale counting guide is
included as a header, below which the printed data is displayed for the selected PRINT or PLOG operation. The width
of the scale line dictates the length of printed text to be displayed on each line of the print block.

More than one print line may be written to represent the same length of printed text depending on the type of printed
output specified. e.g. In addition to the character text print, PRINT TYPE=B will include an extra 2 lines that display an
up-down hexadecimal representation of the printed text as well as an intervening blank line.

The scale may occupy all 3 of the print block header lines, one each for the hundreds, tens and units displayed at 10
character intervals. The third header line contains a line of dots/periods (.) for each character position that is not a
multiple of 5, a comma (,) for character positions that are a multiple of 5 but not a multiple of 10, and a zero (0) for
character positions that are a multiple of 10.

The column scale text and printed text start in record position 21. The width of this column is governed by the value
assigned by the DATAWIDTH option.

If the printed text is longer than the DATAWIDTH value, the text continues on second and subsequent print lines. Each
of these continued lines of printed text are prefixed by a value representing the offset of the text from the start of the
printed field. This value starts in record position 6, has a width of 8 characters and is of the format +nnn,nnn, where
non-significant leading zeros and commas are suppressed and the plus symbol (+) is right adjusted to the first
significant numeric. Note that, for groups of print lines that represent the same printed text (e.g. PRINT TYPE=B), the
offset value is displayed before the first print line of the group only.

For example, with OPTION DATAWIDTH=50 in effect, a printed prime input record of length 215 is displayed as:

Chapter 2. Program Execution Control Statements

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 31

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0 ------
 9 9 7 10010005....Mrs...Patricia.......Sample........... 215
 +50 ...Mrs Sample..............xxxxxxxx xxxxx.........
 +100 xx. xxxxxxxxx xxx............................
 +150 Fxxxxxxxxx......Kxxx..xxxx xxx..xxxxxx x
 +200 xxxxxx......C..
 ,....1....,....2....,....3....,....4....,....5

RECORD LENGTH
Applicable only to print output other than TYPE=D (Dump) and TYPE=S (System), this column displays the length of
the last record or row read from the prime input object at the time the print operation was executed.

The RECORD LENGTH column starts in record position 21 plus the DATAWIDTH value and has a width of 7
characters. The column header text is right adjusted at one column beyond the width of the column, whereas the
column values are right adjusted within the column area width.

Display of this column may be suppressed using the PRRECLEN=NO option.

PRINT Block - TYPE=D Output

Printed text that is in TYPE=D (Dump) format also writes 3 header lines but includes only the INPUT RECNO, SEL TOT and
SEL ID. columns. (i.e. No scale or RECORD LENGTH columns.)

 INPUT SEL SEL
 RECNO TOT ID.
 ----- --- ---
 1 1 2 71
 0000 2A2A2063 3A5C6E62 6A5C6361 5C4C3035 |** c:\nbj\ca\L05|
 0010 2E636D78 202A2A2A 20202020 20202020 |.cmx *** |
 0020 2020204C 3D383130 202D2D2D 20323031 | L=810 --- 201|
 0030 352F3035 2F323820 31313A35 373A3132 |5/05/28 11:57:12|
 0040 2020284C 303529 | (L05) |
 2 2 2 0
 3 3 2 58
 0000 3C736574 70742037 3220602A 20216363 |<setpt 72 `* !cc|
 0010 20636020 20202020 20202020 20202020 | c` |
 0020 20207C20 53657420 706F696E 74732061 | | Set points a|
 0030 6E642063 6F6C6F75 722E |nd colour. |

Although no RECORD LENGTH column header is displayed, the length of the last record or row read from the prime input at
the time the print operation was executed, is displayed to the right of the SEL ID column value. The value is right-adjusted in a
column starting at record position 29 for a width of 5 characters.

The printed text is written on the lines following the statistical values and spans the entire width of the list output starting at
record position 3. The print format is the standard IBM system dump display where each printed line contains a hexadecimal
value offset from the start of the printed text, followed by the hexadecimal and character representation of the text at that offset.

Offset
The offset value is a 4 digit hexadecimal (hex) numeric value, printed so that the hex digits are displayed side-by-side
and occupying 4 characters of the print line. Therefore, an offset may be a value in the range x'0000' to x'FFFF'
(decimal 65535). For offset values above this maximum, the displayed value is truncated on the left so that high order
digits are not displayed.

Hexadecimal Display
Hexadecimal (hex) display of the printed text is such that each character is represented by 2 hex digits in the range
x'00' to x'FF' as defined by EBCDIC or ASCII character encoding standards. These hex digits are displayed
side-by-side in a dump print. i.e. Each character of printed text occupies 2 characters of printed hexadecimal
representation. For convenience, the hex display is grouped into 4 characters of printed text (8 hex digits) with a single
intervening blank.

Character Display
Character representation of the printed text follows the last character of the hexadecimal display with 5 intervening
blanks. The character display is enclosed within special characters as defined by the DUMPENC option - default
or-symbol (|).

The first line of printed text starts at offset zero (0000) with subsequent lines containing text at consecutive offsets up to the end
of the printed field.

The length of printed text displayed on each line of the TYPE=D output is always a multiple of 4 (1 fullword) and is governed by
the prevailing value for page width (option PAGEWIDTH) as detailed below.

PAGEWIDTH values Printed Text Length PAGEWIDTH values Printed Text Length
66 12 (3 fullwords) 93-105 24 (6 fullwords)
67-79 16 (4 fullwords) 106-118 28 (7 fullwords)
80-92 20 (5 fullwords) 119-156 32 (8 fullwords)

Chapter 2. Program Execution Print Block

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 32

If option DUMPALL=NO is in effect, consecutive TYPE=D print lines that contain the same text, will be grouped together and
condensed so that only the first line of the group is displayed with all remaining lines in the group replaced with a single print
line. This single line contains the offset of the 2nd line in the group, the literal "=same=" followed by the number of lines
represented by this print line. The character text area of this line is all blank and enclosed by the alternate DUMPENC option
character - default colon (:).

 INPUT SEL SEL
 RECNO TOT ID.
 ----- --- ---
 0 1 11 190
 0000 206C696E 65732073 75707072 65737365 | lines suppresse|
 0010 642E2020 20202020 20202020 20202020 |d. |
 0020 20202020 20202020 20202020 20202020 | |
 0030 =same= (7 lines) : :
 00A0 20202020 20202020 44696666 20646174 | Diff dat|
 00B0 612E2020 20202020 20202020 2020 |a. |

Summary (Totals) Block

Unless options NOPRINT or PRTSUM=0 (synonyms NOPTOT, NOPSUM) are set, the summary of control statements execution is
written to the SELCOPY list output during end of job processing.

The summary block reports the number of times each control statement was executed as well as information on each input and
output object. The level of detail and, hence, the amount of report lines displayed in the summary block, is determined by the
PRTSUM option value (default 2).

Unless otherwise stated, numeric values reported in the summary block that overflow the allotted column field width will be reported
as a number of asterisk symbols (*) equal to the width of the column field.

The 3 standard summary block header lines are as follow:

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---

Starting in record position 1, SUMMARY.. occupies the first header line and identifies the start of the summary diagnostic
information block. The remaining 2 header lines identify column names below which statistical values are displayed for each
individual statement or group of statements eligible for execution during selection time processing.

Information displayed for I/O operations may occupy multiple lines of the summary block report and, depending on the PRTSUM
level, additional lines may be included for labels and operations not assigned a selection identifier number. Further lines may be
included to report SELCOPY warning messages which immediately following the statement selection report lines to which they
apply. See Summary Block Messages for detailed descriptions of these messages.

Named summary block columns SEL-ID and SELTOT contain values for all statements for which a selection identifier number has
been assigned. The remaining columns potentially contain values for I/O operations CAT, CLOSE, DELETE, INSERT, OPEN,
READ, UPDATE and WRITE only.

Summary Block Selection Statistics Columns

SEL-ID
Specifies the selection identifier number or range of selection identifier numbers corresponding to one or more
executable statements to which summary details in the current report line are applicable.

Consecutive selection identifiers are grouped together if the statements to which they are assigned have been
executed the same total number of times (see the SELTOT column). A statement identifier is excluded from this
grouping when the statement to which it is assigned contains a summary block comment (starting with compound
symbol *>) or is one of the operations: CAT, CLOSE, DELETE, INSERT, ODBC, OPEN, READ, UPDATE or WRITE.

Similarly, a group of selection identifiers will be split into smaller groups where option PRTSUM=2 is in effect and a
programmer-defined label occurs within the group, or grouping suppressed altogether when option PRTSUM=3 is in
effect.

The SEL-ID column header starts in record position 2.

The first (or only) selection identifier number is right adjusted in an area starting at record position 1 of width 5
characters. If a range of selection identifiers are represented, this number is the first identifier in the range. The second
identifier number represents the last identifier in the range and is right adjusted in an area starting at record position 6
of width 5 characters. Non-significant zeroes in the first number are replaced with blanks whereas non-significant
zeroes in the second number are replaced with hyphen (-) symbols.

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 5,319 READ INCMX 2048 211 U 5,319 C:\nbj\ca\xxx.cmx
 2---13 320
 14 22 Summary block comment.

Chapter 2. Program Execution PRINT Block - TYPE=D Output

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 33

SELTOT
Specifies the total number of times the statement or group of statements, represented by selection identifier(s)
displayed in the SEL-ID column, have been executed in the SELCOPY run.

The SELTOT column header starts in record position 14.

The totals number is displayed with comma (,) punctuation after every 3 digits starting from the units digit and is right
adjusted in an area starting at record position 7 of width 13 characters.

This area overlaps the area occupied by the second selection identifier number in a range group of identifiers
displayed in SEL-ID. However, this has no destructive affect unless the total number of executions exceeds 9,999,999,
in which case the second identifier number in the range of selection identifiers is suppressed.

If the selection total value exceeds 2,147,483,647 (hex 7FFF,FFF), then +2.1G+ is displayed instead.

opword
This unheaded column occupies the area between the SELTOT and FILE columns. The contents of this column are
dependent on the level of diagnostic information in effect (PRTSUM) and can potentially span all subsequent columns.

PRTSUM=1
The column starts in record position 21 and has a width of 4 characters.

It contains one of the I/O operation words (READ, CAT, WRITE, INSERT, UPDATE or DELETE) as executed
by the statement identified by the selection identifier in SEL-ID. Note that summary block comments on these
types of statement are ignored.

For all other statements or groups of statements assigned identifiers, this column contains blanks unless a
summary block comment has been specified or a summary block message has been returned. If either of
these conditions is true, the statement for which the comment or message text is to be displayed, is not
included in a statement group but is reported separately. Comment text starts at offset 1 of this column,
message text at various offsets, with text spanning all subsequent columns.

If the summary block report line contains comment text or I/O operation data, then a summary block message
is reported on a line of its own, immediately following the statement report line to which it applies.

PRTSUM=2
In addition to the content described for PRTSUM=1, this column contains the names of programmer defined
labels and any unconditional RETURN operations. For highlighting purposes, the label names are displayed
with enclosing equals (=) symbols and a preceding blank line, whereas RETURN operations displayed as
=ret=.

PRTSUM=3
The column starts in record position 21 and has a width of 10 characters.

With the exception of summary block comments, this column has the same content as for PRTSUM=1 and 2
but with the In addition to the content described for PRTSUM=1 and 2, this column contains an entry for each
run-time executable statement, regardless of whether it has been assigned a selection identifier. For each of
these statements, this column displays either the abbreviated name of the operation being executed or the
name of the internal variable or @Variable to which a value is being assigned.

Operation names, other than those I/O operations itemised in PRTSUM=1 above, and names of internal
variable/@Variable assignments may span summary block columns that follow.

Unlike PRTSUM=1 and 2, all comment text, including summary block comments, are aligned at a fixed record
position. Comment text includes the preceding asterisk (*) symbol and overlays blank entries in subsequent
columns of the same summary line. Where specified on one of the I/O operations, the subsequent column
entries are not blank and so the comment text is aligned at the same, fixed record position but on a new line.

Comment text on programmer-defined labels is aligned at record position 53. On all other statements,
comment text is aligned at record position 73.

Summary Block I/O Operation Columns

FILE
Identifies an up to 8 character file name assigned to the object on which the I/O operation is performed.

By default, the FILE column starts at record position 26, has a width of 8 characters and both the column header text
and column values are left adjusted within the column area. If PRTSUM=3 is in effect, this column starts at record
position 32.

BLKSIZE
Displays the block size used for the I/O operation. The block size defines the size of the buffer used by SELCOPY
when performing data I/O on the specified object, and is the maximum size of a block for file objects defined with a
blocked record format (RECFM). See LRECL column below.

For VSAM data sets processed in a z/OS or z/VM CMS environment, the reported BLKSIZE value is the maximum
record size (RECORDSIZE) value defined for the cluster data records.

Chapter 2. Program Execution Summary Block Selection Statistics Columns

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 34

By default, the BLKSIZE column starts at record position 34, has a width of 7 characters and column values are right
adjusted within the column area. The column header text is located at record position 35. If PRTSUM=3 is in effect, the
column values start at record position 40 with header text starting at record position 41.

LRECL
Displays values for the input or output object in the following order:

The length of the longest input or output record processed for the specified object.

This column value is numerical and starts at record position 42, has a width of 5 characters and is right
adjusted within the column value area. If PRTSUM=3 is in effect, the column value starts at record position
48.

1.

The format (RECFM) of the records processed.

This column contains a character value and starts at record position 48, has a width of 3 characters and is
right adjusted within the column value area. If PRTSUM=3 is in effect, the column value starts at record
position 56.

2.

The column header text is located at record position 44 or, if PRTSUM=3 is in effect, position 50.

The basic record formats displayed in the second column are:

F Fixed length format records.
V Variable length format records.
U Undefined length format records.

Unless a RECFM value is specified as a parameter on the SELCOPY I/O operation or the RECFM value can be
established from another source (e.g. z/OS VTOC or JFCB), then the default input record format is U (undefined) and
the default output record format is the same as the prime input.

For native z/OS data sets and z/VM CMS files, the record format displayed in this column will be the RECFM defined
when the file (data set) was allocated/created. See operating system documentation for possible RECFM values and
their definitions. e.g. For z/OS, see "MVS JCL Reference".)

VSAM RRDS input/output, ODBC based input/output and SELCOPY list input are all reported as being record format F
(fixed length). All non-RRDS VSAM input/output (KSDS, RRDS, etc.) is reported as being of record format U
(undefined length).

In addition to the standard, undefined length format files that employ end-of-line characters to terminate records,
SELCOPY supports input/output of fixed and variable length (blocked and unblocked) record format files belonging to a
hierarchical file system (e.g. FAT32, NTFS, EXT4, XFS, ZFS). Furthermore, SELCOPY supports hierarchical file
system input/output of files assigned one of the following special variable length record formats. These are reported in
the second LRECL column:

V2 Variable length format records that each have a leading 2-byte (4 digit) big-endian hexadecimal
value defining the length of the record data that follows.

V3 Variable length format records that each have a leading 3-byte field comprising a flag byte followed
by a 2-byte (4 digit) big-endian hexadecimal value defining the length of the record data that follows.
Files of this format are created by FTP block mode (MODE B) transfer of z/OS RECFM VB files to
ASCII based platforms.

MFV A Micro Focus Variable length format file which has a fixed, 128-byte header followed by variable
length records that each have a leading 2-byte field comprising a flag byte followed by a 1-byte (2
digit) hexadecimal value defining the length of the record data that follows.

FSIZE
For z/OS VSAM and z/VM CMS VSAM data sets, FSIZE displays the number of records in the data set when it is
opened. Otherwise, FSIZE displays the number of records read from or written to a data object since that object was
opened.

In z/OS and z/VM CMS environments only, if an UPDATE, DELETE and/or INSERT has been actioned on a VSAM
data set, then each reference to that data set on an I/O operation within the summary block will be immediately
followed by additional report lines, one each for the number of updates, deletes and inserts performed. These numbers
are right adjusted in the FSIZE column and are followed by the character literal: UPD, DEL or INS.

By default, the FSIZE column starts at record position 52, has a width of 13 characters and both the column header
and column values are right adjusted within the column area. If PRTSUM=3 is in effect, the column starts at record
position 58.

The number of records value is displayed with comma (,) punctuation after every 3 digits starting from the units digit.

Chapter 2. Program Execution Summary Block I/O Operation Columns

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 35

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1----2 1
 3 12
 4 11 READ TESTK 100 71 U 11 DJH.TEST.KSDS
 2 UPD
 1 DEL
 3 INS
 *EOF*NOT*REACHED*

CI
For VSAM data sets processed in a z/OS or z/VM CMS environment, this column displays the CISIZE (control interval
size) value defined for the data component of the VSAM cluster.

By default, the CI column starts at record position 66, has a width of 5 characters and column values are right adjusted
within the column area. The column header text is located at record position 68. If PRTSUM=3 is in effect, the column
values start at record position 72 with header text starting at record position 74.

DSN
Displays the reference to the data object (fileid, SQL SELECT statement or SELCOPYi list command) to which the file
name is assigned. In the case where a file name is dynamically allocated to a data object identified by a field or
declared variable name, this column will display the data object to which the file name was allocated when it was last
opened.

By default, the DSN column starts at record position 72 and has a width of 61 characters so restricting the summary
block report record to a width of 132 characters. DSN column entries that exceed 61 characters wrap so that as many
additional summary block records are written as is needed to display the full DSN entry.

Column entries are left adjusted within the column area and the column header text is located at record position 74. If
PRTSUM=3 is in effect, the column values start at record position 78 with header text starting at record position 80.

 ... BLKSIZE LRECL FSIZE CI DSN
 ------- ----- ----- -- ---
 2048 211 U 5,321 C:\nbj\ca\L05.cmx
 2048 211 U 5,321 C:\tmp\160_byte_filename_for_Gxxxx_Gxxxx_of_DDDDD_2004-12-08_
 sq11471_padlen7_Padding_Length-29-up-to-here-_ABCDEFGHIJKLMNO
 PQRSTUVWXYZ---60---abcdefghijklmnopqrstuvwxyz

Warning Messages

If selection time processing has completed with a non-zero return code, then warning messages are displayed in column 1 of the
list output, following the diagnostics summary block.

A warning message starts with the text ***WARNING***, and is followed by a reference to the selection identifier of the statement
that triggered the warning. The format is (SELnnnnn), where nnnnn is the right adjusted selection identifier number, padded on
the left with minus/hyphen symbols (-). e.g.

 WARNING (SEL----5) 8 = RETURN CODE FROM SELCOPY

If the warning was triggered by a statement that is not assigned a selection identifier (i.e. an IF, AND, OR operation), then the
selection identifier of the first THEN statement that follows is reported but with a single minus/hyphen (-) preceding the number. e.g.

 WARNING (SEL -42) 52 = RETURN CODE FROM SELCOPY

Footer Lines

The following 2 footer lines are displayed as standard at the end of the last page of the SELCOPY List output:

 ** SELCOPY/WNT n.nn.bbb yyyy/mm/dd Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: dd mmm yyyy **

Where:

n.nn.bbb is the SELCOPY release and build level. e.g. 3.20.009•
yyyy/mm/dd is the ISO format date of this SELCOPY build level. e.g. 2017/10/17•
dd mmm yyyy is the date at which the active SELCOPY licence key will expire. This date is in day-of-month, abbreviated
month name and 4-digit year format.

•

These footer lines cannot be altered but are suppressed if option NOPRINT is in effect.

Chapter 2. Program Execution Warning Messages

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 36

Chapter 3. Data Elements and References

This chapter describes the data elements on which operations are performed within a SELCOPY program. Data elements
represent the value of a constant or a variable, or the value obtained from the contents of a field.

It also describes references to data objects and data elements as terms within an expression.

Substitution Variables
Substitution variables represent values that are established and implemented during SELCOPY control statement analysis.

These types of variables have character constant values that cannot be updated during selection time (run-time) processing. They
are used only as a mechanism for substituting a character constant value in place of its assigned variable name wherever that
name occurs within the SELCOPY control statements that follow the assignment statement.

Substitution variables may exist as environment variables, parameter variables or equated symbols.

Environment Variables

Environment variables are a set of dynamic named values that have been established by the operating environment (shell or
address space) in which the SELCOPY process is started. Environment variables (e.g. TEMP, HOME, PATH) are supported in all
Microsoft Windows, Linux, Unix and OS/400 operating systems.

In z/OS TSO, SELCOPY identifies environment variable names as being MVS system symbols. Furthermore, in z/OS and CMS
environments, variables established within a REXX procedure that invokes SELCOPY are also treated as environment variables.

SELCOPY supports reference to these environment variable names and substitution of their assigned values within its control
statements.

SELCOPY option ENVVAR/NOENVVAR determines whether this substitution is activated or not. Unless NOENVVAR is set in the
SELCNAM options file, the default action is ENVVAR (i.e. perform variable substitution.) ENVVAR and NOENVVAR options may
be specified throughout the SELCOPY control statement input to activate and deactivate environment variable substitution in the
control statements that follow.

If environment variable substitution is active, any text in the SELCOPY control statements, that is enclosed between two percent
(%) symbols, is treated as being a reference to an environment variable name and substitution is attempted. The substitution will
occur regardless of the variable name's location within a statement. e.g. within a quoted character constant.

In addition, when executing in a z/OS TSO environment, SELCOPY also interprets any text of up to 8 characters in length, prefixed
by an ampersand (&) and terminated with a dot/period (.), as being an environment variable reference. e.g. the following
statements are equivalent in z/OS TSO.

 PRINT "The System Symbol, SYSNAME, has a value of '%SYSNAME%'."
 PRINT "The System Symbol, SYSNAME, has a value of '&SYSNAME.'."

If SELCOPY should fail to resolve an environment variable name, then the action taken is governed by the prevailing value of
option ENVFAIL. Note: Option ENVVAR will reset ENVFAIL to its default value. (i.e. SAME)

Parameter Variables

The first 9 parameters passed to the SELCOPY program as blank delimited parm values, are used, in sequence, as values on
automatically generated EQU operations for symbols %1, %2, ... %9 respectively. The generated EQU operations are processed
before all other statements in the control statement file and are displayed as the first statements of the SELCOPY list output. No
EQU operation is generated for parameter zero (%0) which is always set to be the SELCOPY executable program name.

Thus, occurrences of a single decimal digit (0-9) prefixed by a percent (%) symbol anywhere within the control statements, will be
substituted with the equivalent numbered input parameter value. Unlike programmer-defined equated symbols, substitution will
occur regardless of the variable name's location within a statement. e.g. within a quoted character constant.

Like environment variables, the status of option ENVVAR/NOENVVAR determines whether or not substitution of parameter
variables is activated. Also, if substitution is attempted for an unspecified parameter reference (e.g. %5 when only 4 parameters
have been specified), then the action taken is governed by the prevailing value of option ENVFAIL.

Input parameter values may also be accessed via SELCOPY's internal copy of the parameter list which exists as a null terminated
character field of minimum length 80 at the named position, PARM.

Example of parameter variable usage:

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 37

 OPTION ENVVAR ENVFAIL='#FAIL#'

 IF '%1' = '#FAIL#'
 THEN LOG 'Error: Missing or unexpected input parameter.'
 THEN GOTO EOJ

 ELSE PRINT 'First input parameter is: "%1".'

Equated Symbols

Equated symbols are programmer defined names that represent character constant values.

An equated symbol name and its equated value are defined using the EQU operation which is processed during control statement
analysis. All identifiers that match the name of an equated symbol and occur in control statements following the EQU operation on
which the symbol is defined, are substituted with the equivalent equated value. To avoid confusion, it is recommended that all EQU
operations are located at the start of control statement input.

Substitution will occur for terms within an arithmetic expression, returning a selection time error if the equated value is invalid (e.g.
non-numeric). If the equated symbol has a single leading and trailing "%" (percent) character then, like environment variables,
substitution may occur within a quoted character constant. Otherwise, substitution of equated symbols will not occur for text in a
quoted character constant or hex character constant.

The symbol name and value defined by an EQU operation is itself subject to equated symbol substitution as defined by previously
processed EQU operations. Therefore, equated values may be nested. Nesting equated symbols is a good technique to use when
establishing fields within the work area buffer. e.g.

 EQU IREC 1 * Input record position.
 EQU IREC_LEN 100 * Input record maximum length.

 EQU OREC IREC+IREC_LEN * Output record position. (POS 1+100)
 EQU OREC_LEN IREC_LEN * Output record maximum length. (100)

 OPTION WORKLEN=OREC+OREC_LEN-1 * Work area length 200. (1+100+100-1).

In the above example, all operations and variable assignments may (and should) use equated symbols when referencing fields in
the work area. If this is so then, should the job need to be adapted to handle input/output records of length greater than 100 (e.g.
LRECL 256), then the IREC_LEN equated value need only be updated and the integrity of the job is maintained.

Substitution of equated symbols occurs before a statement is parsed by SELCOPY during control statement analysis processing.
Therefore, an equated symbol name may match the name of any other identifier (SELCOPY keyword or programmer-defined
name) so substituting the identifier with the value assigned to the equated symbol. Syntax analysis is then performed on the
updated statement. e.g.

 EQU PRINT PLOG * PLOG (PRINT and LOG).
 PRINT "Hello World!" * Operation keyword substituted with PLOG.

Warning:
Because substitution of SELCOPY identifier keywords will occur without restriction, the programmer must take care when choosing
equated symbol names that are also used as keywords (or keyword synonyms) within the SELCOPY control statements.

Similarly, it is possible to define an equated symbol name comprising only numeric digits or one which includes relational or
arithmetic operators (e.g. "+", "-", ">"). Doing so may adversely affect evaluation of expressions that follow and therefore should be
avoided.

Work Area or Input Buffer
Every execution of SELCOPY requires a base storage buffer in which input data may be stored and optionally manipulated, and
from which output records may be written or printed. Even if the base storage buffer is not used for these purposes, its existence is
mandatory.

SELCOPY statements reference the location of a user field definition as a positional expression which evaluates to an integer
value. This position value is a relative displacement which, when applied to the address of the base storage buffer (base address),
corresponds to the address in storage of the field. Without a base storage buffer, this fundamental principle of SELCOPY operation
would fail.

Work Area

The base storage buffer may be explicitly defined within a SELCOPY program using the WORKLEN option.

WORKLEN instructs SELCOPY to allocate an area of storage of static length as specified by the WORKLEN value and initialise its
contents using the FILL option character (default blank). This work area becomes the base storage buffer.

Chapter 3. Data Elements and References Parameter Variables

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 38

By default, execution of a READ operation will copy the next record or row of data from the input buffer into which a block of data
was read, to a position of the work area (default position 1). Similarly, execution of a WRITE operation will copy a field which
constitutes an output record, to the next output record location within the output buffer.

Note that the work area will not be used for I/O if a declared variable of type character is specified as the target (INTO) of the READ
operation or the source (FROM) of an output WRITE, PRINT, UPDATE or INSERT operation.

If the SELCOPY program has no input data object (i.e. no READ operation exists), a default work area of length 80 characters (i.e.
WORKLEN=80) is allocated.

Input Buffer

Where option WORKLEN is not specified and an input data object exists, the base storage buffer address is the address of the
record within the input buffer belonging to the last data object processed by a READ operation. The length of the base storage
buffer is the length of the last input record read.

Since the address and length of the base storage buffer changes for each execution of a READ operation, the address of a user
field definition changes accordingly. e.g. Position 1 will always be the address of the current input record. Therefore, unless
declared variables are used, reference to the position of an input record read by a previous execution of a READ operation, is no
longer possible.

Constants
A constant represents a value that does not change throughout the term of the SELCOPY program execution. Constants are
specified by stating the value, where required, within the SELCOPY statements.

Character Constants

Character data is a string of one or more bytes, each representing one of the 256 characters (x'00'to x'FF') supported by the SBCS
character set local to the operating system environment in which SELCOPY runs. For z/OS, z/VM CMS and OS/400 systems,
character sets are based on EBCDIC encoding. For all other operating systems on which SELCOPY can run, characters sets are
ASCII based.

Character constants may be used as variable and field value assignment values, as values in logical character compare operations
(IF) and as source data on output operations (PRINT, WRITE). They may also be used to represent a bit mask following bitwise
operators MIXED, ONES, ZEROS and on logical operations AND, OR, XOR.

A character constant may be specified in one of the following formats.

Unquoted Literals

An unquoted literal is a continuous sequence of characters that does not include an apostrophe ('), quotation mark (") or one of
the blank delimiter characters. Alpha characters in unquoted literals are upper cased.

This format of character constant specification can only be used in the following:

As assignment values for variables declared as being of one of the supported character data types.•
As assignment values for work area fields using MOD or MOVE operations.•
As test strings on IF, AND, OR operations.•

Unless specified as an assignment value for an unformatted character field or a declared variable, an unquoted literal
comprising only numeric digits, with or without a decimal point (.), leading unary plus (+) or leading unary minus (-), is treated as
being a numeric constant.

Undesirable results may occur where an unquoted literal value is also the name of a statement identifier. e.g. A SELCOPY
keyword (or keyword synonym), a declared variable name or equated symbol. To avoid ambiguity, quoted character constants
should be used instead.

Examples of unquoted literals are:

Constant Value Length
John JOHN 4
a*b A*B 3
123c 123C 4

Chapter 3. Data Elements and References Work Area

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 39

Quoted Character Constants

A quoted character constant is a contiguous sequence of characters enclosed in apostrophes (') or quotation marks ("). No
upper case translation is actioned on alpha characters in quoted character constants.

Apostrophes (') or quotation marks (") may be specified as text within a quoted character constant by simply using the alternate
enclosing characters. e.g. Enclose the constant in apostrophes if the constant value contains quotation marks.

Alternatively, if the enclosing character is also to be used as text within the constant, each single occurrence of that character
must be entered twice. (i.e. '' or "")

Examples of quoted character constants are:

Constant Value Length
'a*b' a*b 3
'No! **#---++#---**' No! **#---++---#** 18
'She said, "John".' She said, "John". 17
'O''Reilly''s car' O'Reilly's car 14
'' 0

Hex Character Constants

A hex character constant is a contiguous sequence of an even number of hex digits enclosed in apostrophes (') or quotation
marks (") preceded by the letter X. Each pair of hex digits represents a single character.

The length of a hex character constant is half the number of hex digits specified. Null hex character constants (X'') are invalid,
however, any number of punctuating commas (,) may be entered between the hex digits.

A hex constant expressed in this way may also be used to represent a hex binary integer constant. Interpretation of a hex
constant as either a character value or a numeric value depends on its usage within an assignment or operation statement.

If any of the following apply to the hex constant specification, it will be treated as a numeric value:

The hex constant is a term in an arithmetic expression. e.g.

 1+x'20'-3 * Equivalent to: 1+32-3

1.

The hex constant is preceded by keyword POS or is followed by keyword AT. i.e. it is an element of a field definition.
e.g. The following both represent a field definition of length 16 starting at position 32 of the work area buffer.

 POS x'20' LEN x'10'
 x'10' AT x'20'

2.

In all other instances, a hex constant will be interpreted as a character constant.

Examples of hex character constants are:

Constant Value (ASCII) Value (EBCDIC) Length
X'4D616C5D' Mal] (/%) 4
x",,,,4E,4B,5C," +.* NK\ 3
x'4C7E,406F,3B6F,407A,7E6E' L~@o;o@z~n <= ?,? :=> 10

ASCII/EBCDIC Character Constants

By default, unquoted literals and quoted character constants are interpreted using the base code page encoding scheme used
by the local system (EBCDIC or ASCII). e.g. the constant 'A' will be interpreted as EBCDIC X'C1' on z/OS systems, ASCII X'41'
on Microsoft Windows systems.

The encoding scheme used by SELCOPY to interpret an individual character constant may be controlled by the programmer
using keywords EBC (EBCDIC) or ASC (ASCII) as a suffix to the constant specification.

Examples of specific ASCII/EBCDIC character constants are:

Constant Value Length
'a*b' ASC X'612A62' 3
'a*b' EBC X'815C82' 3
'AZaz09' ASC X'415A,617A,3039' 6
'AZaz09' EBC X'C1E9,81A9,F0F9' 6

Chapter 3. Data Elements and References Quoted Character Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 40

Numeric Character Constants

A numeric character constant is a character constant which may be interpreted by SELCOPY as a numeric constant. A numeric
character constant may be used on operations and variable assignments in place of a numeric constant. If the numeric constant
contains blank characters or "," (comma) punctuation, it must be specified as a quoted character constant.

The format of a numeric character constant and its interpretation by SELCOPY is discussed in detail under Numeric Character
Data.

Date Character Constants

Applicable only to CVDATE operation source values, a date constant represents a date value in a format specified by a TYPE
and STYLE specification.

See Date Data Types for detailed information on the types and styles of date supported by SELCOPY.

 +- TYPE ---- C --+ +- STYLE ---- I --+
 | | | |
 |--+- quoted_constant --+---+----------------+---+-----------------+-------|
 | | | | | |
 +- hex_constant -----+ +- TYPE +-+- B --+ +- STYLE --+- A --+
 | | | | | |
 +- TY --+ +- P --+ +- B --+
 | | | |
 +- U --+ +- D --+
 | |
 +- J --+
 | |
 +- T --+

Parameters:

quoted_constant | hex_constant
A quoted character constant or hex character constant that specifies the source date value. The interpretation of this
date value depends on the TYPE and STYLE option attributed to it.

A character (TYPE=C) source value may contain numeric and non-numeric digits. The format of a TYPE=C source
date value and its interpretation by SELCOPY is discussed in detail under character date data type.

The format used to specify the date value may be selected so that data best suits the TYPE attribute. i.e.
quoted_constant is preferable when TYPE=C is used, hex_constant for TYPE=B, P and U.

STYLE
STYLE identifies one of the following commonly used date styles (date format).

A American standard date format. (mmddyyyy)
B British (and European) standard date format. (ddmmyyyy)
D Number of days since 1900/01/01.
I International (ISO) standard date format. (yyyymmdd)
J Julian date format. (yyyyddd)
T 8-byte binary time-of-day (TOD) clock as obtained via the z/Architecture STCK instruction. Any TYPE

specification is ignored for STYLE=T.

TYPE
TY

TYPE specifies the source data type of the date value.

B The decimal numerical digits that constitute the date value expressed as a signed binary integer value.
e.g. 2015/08/21 (STYLE=I) is X'01337A25' (decimal 20150821).

C Character date. A character date source value may contain numeric and non-numeric digits. The format
of a TYPE=C source date value and its interpretation by SELCOPY is discussed in detail under
character date data type.

P The decimal numerical digits that constitute the date value expressed as a signed packed decimal
integer value. e.g. 2015/08/21 (STYLE=I) is X'020150821C'.

U The decimal numerical digits that constitute the date value expressed as an unsigned packed decimal
integer value. e.g. 2015/08/21 (STYLE=I) is X'20150821'.

Examples:

Examples of date character constants are:

Chapter 3. Data Elements and References Numeric Character Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 41

Constant Date Value
(FORMAT='yyyy/mm/dd')

'12/25/2012' TYPE=C STYLE=A 2012/12/25

'2003/243' TYPE=C STYLE=J 2003/08/31

'34555' TYPE=C STYLE=D 1994/08/10

X'1E8482' TYPE=B STYLE=J 2000/01/02

X'2013,142C' TYPE=P STYLE=J 2013/05/22

X'1806,2005' TYPE=U STYLE=B 2005/06/18

X'92EE35A6,DE000000' STYLE=T 1981/11/29

Numeric Constants

Numeric constants are values that represent a quantity, length or location within SELCOPY syntax.

Numeric constants are the simplest form of arithmetic expressions used within SELCOPY syntax. Multiple numeric constants may,
of course, be used as terms within more complex arithmetic expressions.

A numeric constant may be specified in one of the following formats.

Decimal Integer Constants

A decimal integer constant is comprised of one or more contiguous decimal digits (0-9) optionally prefixed by a unary plus (+) or
minus (-) operator. Decimal integer constants must not contain comma punctuation or a decimal point. If no leading unary plus
or minus symbol is specified, unary plus is assumed by SELCOPY.

A decimal integer constant has a precision (p), where p is the total number of digits in the constant.

A decimal integer constant is treated as an unquoted literal character constant when specified as the value assigned to a field or
declared variable of data type character with no numeric interpretation.

Examples of decimal integer constants are:

Constant Precision
5 1

+132 3

-23 2

32768 5

0006 4

0 1

Zoned Decimal Integer Constants

A zoned decimal integer constant is comprised of one or more decimal digits (0-9) and ends with one of the upper case alpha
characters "C", "D" or "F". Zoned decimal integer constants must not contain comma punctuation.

If the base code page encoding scheme used by the local system is ASCII, a zoned decimal constant referenced by a
SELCOPY operation will be converted to EBCDIC before being processed.

Each digit of the zoned decimal value is represented by one byte of the EBCDIC representation of the constant value. The
right-most 4 bits of each EBCDIC byte denote a number which is the zoned decimal digit value represented as a hex code
(x'0'-x'9').

For all the EBCDIC bytes except the last, the left-most 4 bits of the byte denote the zone. The zone bits contain a fixed hex
code (x'F') so that the zone and number bits together constitute a printable EBCDIC character value corresponding to the
decimal digit. i.e. X'F0' to x'F9' is EBCDIC characters 0 to 9.

The left-most 4 bits of the last EBCDIC byte denote the value's sign. Hex codes x'C' and x'F' indicate a positive zoned decimal
value (+) and code x'D' indicates a negative value (-). Note that, although zoned decimal values can have a sign hex code in the
range x'A' to x'F', SELCOPY only supports zoned decimal values with the industry preferred sign codes: x'C', x'D' or x'F'.

A zoned decimal integer constant has a precision (p), where p is the total number of digits in the constant.

A zoned decimal integer constant is treated as an unquoted literal character constant when specified as the value assigned to a
field or declared variable of data type character.

Examples of zoned decimal integer constants are:

Chapter 3. Data Elements and References Date Character Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 42

Constant EBCDIC
Representation

Value Precision

B x'C2' +2 1

72H x'F7F2C8' +728 3

121 x'F1F2F1' +121 3

0000J x'F0F0F0F0D1' -1 5

03D x'F0F3C4' +34 3

Hex Binary Integer Constants

A hex binary integer constant is a '0x' or '0X' followed by a minimum of 1 and a maximum of 8 hex digits (0-F). Regardless of
the processor architecture on which SELCOPY is running, a hex binary integer constant is interpreted as being a signed, 4-byte,
big-endian, binary value of precision 31.

When less than 8 hex digits are used, the stored value will be padded to 4-bytes using the most significant (sign) bit of the
specified hex binary integer. The exception to this is when a hex binary integer is expressed as only 1 or 2 hex digits (i.e.
1-byte), in which case the value is treated as being unsigned and the stored value is padded with zeroes.

See also Hex Character Constants for alternate specification of a hex binary integer constant value.

Examples of hex binary integer constants are:

Constant Same as Decimal Value
0x22 0x00000022 +34

0x1AD 0x000001AD +429

0x0A3F 0x00000A3F +2623

0xA3F 0xFFFFFA3F -1473

0xF 0x0000000F +15

0xFF 0x000000FF +255

0xFFF 0xFFFFFFFF -1

Decimal Fixed Point Constants

A decimal fixed point constant is comprised of one or more decimal digits (0-9) with a decimal point, optionally prefixed by a
unary plus (+) or minus (-) operator. Decimal fixed point constants must not contain comma punctuation. If no leading unary plus
or minus symbol is specified, unary plus is assumed by SELCOPY.

A decimal fixed point constant has a precision (p,s), where p is the total number of digits in the constant and s is the scale
(number of fraction digits).

A decimal fixed point constant is treated as an unquoted literal character constant when specified as the value assigned to a
field or declared variable of data type character.

If a decimal fixed point constant is used in SELCOPY syntax where only an integer value is appropriate, then the fraction digits
are ignored. e.g. when specifying a storage offset or length value.

Examples of decimal fixed point constants are:

Constant Precision
5.4 (2,1)

+2.592 (4,3)

-239.88 (5,2)

32768.43730 (10,5)

.0006 (4,4)

0.01 (3,2)

Zoned Decimal Fixed Point Constants

A zoned decimal fixed point constant is comprised of one or more decimal digits (0-9) with an optional decimal point (.) and
ends with one of the upper case alpha characters "C", "D" or "F". Zoned decimal fixed point constants must not contain comma
punctuation.

See zoned decimal integer constants for interpretation of zoned decimal digits.

Chapter 3. Data Elements and References Zoned Decimal Integer Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 43

A zoned decimal fixed point constant has a precision (p,s), where p is the total number of digits in the constant and s is the
scale (number of fraction digits).

A zoned decimal fixed point constant is treated as an unquoted literal character constant when specified as the value assigned
to a field or declared variable of data type character.

Examples of zoned decimal fixed point constants are:

Constant EBCDIC
Representation

Value Precision

0.1A x'F04BF1C1' +0.11 (3,2)

2.G x'F24BC7' +2.7 (2,1)

12.1 x'F1F24BF1' +12.1 (3,1)

32.1J x'F3F24BF1D1' -32.11 (4,2)

666.666N x'F6F6F64BF6F6F6D5' -666.6665 (7,4)

Variables
A variable represents a value that may change during selection time processing of the SELCOPY program execution. Contrast this
with substitution variables that are implemented during control statement analysis.

The values assigned to SELCOPY internal variables and @Variables may be updated automatically by SELCOPY when operations
are executed that relate directly to the variable. For all types of variable, the value may be updated by the programmer via a
variable assignment statement.

Variable values are referenced by coding the variable name, where required, within the SELCOPY statements.

The three types of variables supported by SELCOPY are: Declared, Internal and @Variables.

Declared Variables

Declared variables are programmer defined names that represent a variable value of specific data type.

Before it can be referenced in an operation or variable assignment, a declared variable must first be declared via one of the
following methods:

Using the DECLARE operation. Because DECLARE is processed during control statement analysis, it is recommended
that all DECLARE operations are located at the start of control statement input.

•

Automatically by SELCOPY as a result of a READ operation on a SELCOPYi list or on a database (or equivalent) object
accessed via ODBC. A variable of data type character is declared for each column of input text with a name equivalent to
the input column name.

•

A declared variable references a value which, as for field definition values, is determined from its address (position) in storage, its
length (precision) and its data format (data type). Any reference to the variable name in SELCOPY control statements is a
reference to that variable's current value.

Source data types supported for declared variables are documented under Data Types.

Storage Remap

By default, a declared variable references a value defined in a source field within a dynamic area of storage.

Alternatively, the address of the variable source field may exist within storage that has already been allocated (e.g. the work
area or another declared variable). This provides a means by which input data fields can be mapped to variable names, and is
the method used by SELCOPY when automatically declaring column name variables for ODBC database and SELCOPYi list
input. For variables declared via a DECLARE operation, this is achieved using the POS parameter keyword. e.g.

 DECLARE IREC CHA(256)
 DECLARE ID_NUM BIN(2) POS IREC
 DECLARE ID_LASTNAME CHA(20) POS IREC+002

 READ INDD INTO IREC

Initial Value

A variable declared via the DECLARE operation, is assigned an initial value as specified by the INI parameter. If no INI
parameter is specified, variables of character data type are initialised with blank characters and variables of numeric data type
are initialised as zero (0). This occurs regardless of whether the variable is used to map a field in pre-allocated storage. e.g.

Chapter 3. Data Elements and References Zoned Decimal Fixed Point Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 44

 DECLARE E159 CHA(10) INI='ERR159'
 DECLARE MAX_AGE BIN INI=65 POS IREC+53

&varname Source Field Position

The prevailing value assigned to any declared variable is stored in that variable's source field. The raw data in this field exists in
a format which corresponds to the data type assigned to the variable.

Within SELCOPY control statements, a declared variable name may be prefixed by special character ampersand (&) in order to
reference the position of that variable's source field.

Any reference to a declared variable of a character data type which does not have an associated numeric attribute (FORMAT),
is a reference to the first position of text data in that variable's source field. Therefore, for non-numeric character variables, use
of an & prefix is supported but unnecessary.

However, a reference to a declared variable of numeric data type (including a variable of character data type assigned a
numeric FORMAT) is interpreted as being a numeric value. This value is determined by the variable's source field data type and
the raw data stored within its limits. Therefore, unlike character type variables, in order to reference the source field position of a
numeric (or character numeric) declared variable as opposed to its value, the variable name must be prefixed by &. e.g.

 DECLARE ABC BIN(4) INI '16,909,060' * Which is x'0102,0304'.

 PRINT ABC * Will print the value held in ABC, formatted using the default 14 byte
 * FMT='SS,SSS,SSS,SS9' giving the 14 byte string: ' +16,909,060'

 PRINT &ABC FMT='xxxx,' * Will print the source field for ABC, length 4, using the hex format
 * provided, giving: '0102,0304'

Note that offsets within a declared variable source field may be referenced using an arithmetic expression where the position of
the source field is the first term. e.g. &ABC+1

Internal Variables

Internal variables are variables of pre-determined name that reference values maintained in specific SELCOPY internal fields. The
field values relate to processing information and are updated by SELCOPY over the course of a program's execution.

All of SELCOPY's internal variables represent integer values and most may be referenced by name as terms within an arithmetic
expression. These variable fields are of binary integer data type and have internal storage locations that may be referenced via UX
prefixed position names.

Although maintained by SELCOPY, some internal variable values may be updated by the program via a variable assignment
statement (e.g. LRECL=80). Beware that doing so will have an effect on SELCOPY's default processing and that these values are
subject to change by SELCOPY. e.g. The LRECL value will be updated following the next execution of a READ operation.

The complete list of internal variables including the variable name, the related internal field definition and its description are detailed
in the following table. Unless otherwise stated, these internal variables may be updated via a variable assignment statement and
may be specified as terms within an arithmetic expression.

Variable
Name

Field Name Description

DIFF UXADIFF Following a character compare operation that is not a range test, this variable denotes the first
position within the first character field at which a difference was found. If no difference was
found, this value is 0.

Internal field UXADIFF actually contains the storage address of the difference. This address is
equivalent to the base address (address of the work area or current record within the input
buffer) plus the value of DIFF minus 1.

INCOUNT
IN

UXINCNT

(Value applies
only to the prime
input.)

Maintained as a number of values, one for each input data object, INCOUNT references the
count of input records obtained as a result of a READ operation.

INCOUNT cannot be updated via direct assignment nor included as a term in an arithmetic
expression. However, the INCOUNT value of a particular data object may be tested using an
arithmetic comparison operation. e.g.

 IF INCOUNT INDD > 20 * Test for more 20 input records from file name INDD.

LINE UXLINE A value between 1 and the defined page depth, this variable represents the line number of the
next line to be written to the SELCOPY list output. Assigning a value that is less than the
current value will throw a new page. The assigned LINE value will not represent the next
output line number of the new page, but will immediately be updated by SELCOPY to reflect
the output line number following the page headers.

LINE cannot be included as a term in an arithmetic expression.

Chapter 3. Data Elements and References Initial Value

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 45

LRECL
L

UXLRECL The length of the last input record obtained as a result of a READ operation. This value is
used as the default length of a field referenced by position only. e.g.

 WRITE OUTDD FROM 101 * Field starting at position 101, length LRECL.

REASCD UXREASCD Applicable to z/VM CMS only, the reason code returned by a CMS function, in addition to the
CMS return code (RETSYS).

RETCD
RETCODE
RC

UXRETCD SELCOPY's return code. This value contains the highest return code as set by the SELCOPY
program or by a RETCODE variable assignment statement. A non-zero SELCOPY return
code will trigger a SELCOPY warning message.

RETSYS
RETCMS
RETXV
CMSRETCD

UXRETSYS The return code set by the last system command/operation executed for a SELCOPY CP,
SYSTEM, UTIME or XV operation.

@Variables

Originally introduced as pointers to positions in the work area or input buffer storage, @variable programmer defined names (also
known as @pointer variables) represent integer values that are stored internally as signed, binary integer fields.

By default, an @variable value is assigned automatically by SELCOPY following a character compare range test. Unless parameter
keyword PTR is specified on the IF operation, the name of this @variable is @ (i.e. symbol "@" without a name suffix.)

 IF POS 11, 256 = 'Hello' * Range test.
 THEN PRINT FROM @, @+11 * @ --> 'Hello World.'

Following a successful range test, the @variable is assigned a value equal to the position of the matched text within the range. This
is expressed as 1 plus the offset of the matched text from the base address (i.e. address of the work area or input record buffer). In
the above example, if the character value "Hello" is located at position 89 of the work area, then the value of @ following the range
test will be 89.

If the range test is not successful in identifying a match, a value of zero (0) is assigned and the @variable is also flagged as being
NULL. Note that, since an @variable may be assigned a zero value, the NULL flag is necessary to indicate that the @variable is
unset (IF @abc = NULL).

@Variables may also be explicitly assigned to signed integer values via a variable assignment statement, and may be specified as
terms within an arithmetic expression.

 @offset = -5
 MOD POS INREC+LRECL+@offset-1 = '-x#x-' * Last 5 chars of input record.

The storage address referenced by POS @ (the default @variable) is maintained by internal field UXATPTR. Any update to this
internal field will also update the value assigned to @.

Field Definitions
Field definitions may be used in individual SELCOPY operations or variable assignments to reference data in source and/or target
areas of storage.

Like declared variables, a field has location (position), length and data type attributes. Though, unlike declared variables, a
complete field definition must be specified wherever it is used and may be variable, i.e. referencing a variable position in storage or
have a variable length.

Fields may be expressed in SELCOPY command syntax using one of the following field definition types. Note, however, that not all
SELCOPY operations support the full range of field definition types. Where this is true, the supported field definition types are
identified in the description of the operation.

The position of a field, referenced by the expression expr, resolves to be an address in storage when processed by SELCOPY. The
value of expr is a positive or negative integer value that corresponds to an offset from a base storage address. This base address
is the address of the work area or, if no work area has been specified, the address of the current record within the input buffer
belonging to the prime input file. The offset applied to the base address is equal to the value of expr-1. Therefore, POS 1 is offset
zero (0) from the base address (i.e. position 1 of the work area or prime input record.)

Chapter 3. Data Elements and References Internal Variables

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 46

Field Type 1:

Field definition specified as a storage position and length (field_pLENn).

(1) + POS +
 + P --+
 | |
 |--+-----+--- expr ----+- LENGTH -+-- expr ---------------| Data_Type |-----|
 +- LEN ----+
 +- L ------+

Field Type 2:

Field definition specified as start and end positions in storage (field_p1p2).

(1) + POS +
 + P --+
 | |
 |--+-----+--- expr ------------------ expr ---------------| Data_Type |-----|

Field Type 3:

Field definition specified as a length, starting at a storage position (field_nATp).

 + POS +
 + P --+
 | |
 |------------ expr ----+- AT -----+--+-----+-- expr ------| Data_Type |-----|
 +- FROM ---+
 (2) +- FR -----+

Field Type 4:

Field definition specified as a storage position with a length equal to the length of a format string (field_pFMT).

(1) + POS +
 + P --+
 | |
 |--+-----+--- expr -------------------+- FORMAT -+--+-- fmt_string ------+--|
 +- FMT ----+ | |
 +- FMAT ---+ +-- dcl_var ---------+
 | |
 +-- field_p1p2 ------+
 | |
 (3) +-- field_nATp ------+

Data_Type:

 (4) + TYPE ---- C ------------+ (5)
 + TYPE ---- P ------------+ + STYLE ------ I -----+
 | | | |
 |------+-------------------------+-----+---------------------+--------------|
 | | | |
 + TYPE +-+- B ------------+ + STYLE --+--- A -----+
 | | | | | |
 + TY --+ +- F -+--------+-+ +--- B -----+
 | | | | | |
 | + NAT ---+ | +--- D -----+
 | + NATIVE + | | |
 | | | | +--- J -----+
 | + HEX ---+ | | |
 | + HFP ---+ | +--- T -----+
 | | | |
 | + BIN ---+ |
 | + BFP ---+ |
 | |
 (5) +- U ------------+
 | |
 +- Z ------------+

Syntax Notes:

(1) Specification of the POS keyword may be mandatory. See parameter POS for details.
(2) Restrictions exist for use of synonym FROM and FR. See parameter AT for details.
(3) Data_Type will be ignored if specified on field_p1p2 or field_nATp field definitions which represent a FORMAT string.
(4) The default data type depends on the operation. See parameter TYPE for details.
(5) STYLE and TYPE=U are applicable only to date fields used as the source or target of a CVDATE operation.

Chapter 3. Data Elements and References Field Definitions

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 47

Parameters:

AT
FROM
FR

Identifies the field definition as Type 3.

The mandatory expr expression that precedes the AT or FROM keyword defines the length of the field and the mandatory
expr that follows defines the position in storage of the first byte of the field.

Synonyms FROM and FR are invalid for the following uses of Type 3 fields:

As a target of an operation, following TO or INTO keyword parameters.1.
On operations where FROM is used to identify one or more source fields. e.g. MOD, MOVE, WRITE and PRINT.2.

e.g.

 PRINT FROM 4 FROM 1 * Prints 2 source fields at POS 4 and 1.

 MOVE 4 FROM 1 TO 4 AT 21 * OK.
 MOVE FROM 4 AT 1 TO 4 AT 21 * OK.
 MOVE FROM 4 FROM 1 TO 4 AT 21 * Invalid - ERROR 045.
 MOVE 4 FROM 1 TO 4 FROM 21 * Invalid - ERROR 045. (FROM in target)

expr
An arithmetic expression which evaluates to a positive, non-zero, integer value, expr may identify a length value or a
position within the work area/input record buffer.

expr may identify a field position outside the work area or input record buffer if it includes any of the following:

A declared variable of a character data type with no numeric interpretation (i.e. no FORMAT).◊
The source field of a declared variable of any data type, specified as &varname.◊
A named SELCOPY internal field position. e.g. RPL◊
An @ variable whose value is based on a named SELCOPY internal field position. e.g. @abc = DATE-2◊
An @ variable whose value has been assigned indirectly via an update to the UXATPTR field.◊

For a Type 2 field, the start and end positions, represented by 2 expr values, must define an ascending sequence of
storage locations. If not, then either a control statement error (ERROR 074) or, if the relative positions are variable, return
code 8 is set.

FORMAT fmt_string | dcl_var | field_p1p2 | field_nATp
FMT

Identifies the field definition as Type 4, a character field containing a numeric value. Alternatively, it specifies the format of
printable hex on a CVCH operation.

The FORMAT string value is a template which determines the character representation of the numeric or hexadecimal
digits. Type 4 field definitions are used as the target field specification of a data conversion or modification operation
(CVxx, MOD).

The FORMAT string value is specified as a quoted character constant (fmt_string). Alternatively, if specified on the target
of a CVxC or CVCH operation, the FORMAT string value may be specified as a declared variable of character data type
(dcl_var) or a Type 2 (field_p1p2) or Type 3 (field_nATp) character (TYPE=C) field definition. Any specification of
data_type on a FORMAT string specified as field_p1p2 or field_nATp will be ignored.

See format specification parameters for information on fmt_string syntax.

LENGTH
LEN
L

Identifies the field definition as Type 1. Note that not all operations (e.g. ADD, SUB, MULT, DIV) support use of Type 1
fields.

The mandatory expr expression that follows defines the length of the field. If no AT, FORMAT, LENGTH or expr is
specified following the first expr of the field definition, then the length of the field is derived as follows:

For a field that represents either the target or source of a MOD or MOVE operation, the default field length is
equivalent to the length of the field, constant or declared variable specified as the source or target of the
operation respectively. e.g.

 MOD POS 101 = POS 1 LENGTH 20 * Target field is: POS 101 LENGTH 20
 MOD POS @A+1 = 'OK' * Target field is: POS @A+1 LENGTH 2
 MOVE POS 1 TO CHA1 * Source field has CHA1 variable length.

If length cannot be determined from either of the target or source fields, then a control statement error (ERROR
069) is returned.

◊

For READ and UPDATE operations, specification of length on the input (INTO) target field or update (FROM)
source field is invalid. The length of the field is the length of the record read from the nominated input data object.

◊

Chapter 3. Data Elements and References Field Definitions

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 48

For WRITE, INSERT, PRINT and PUNCH operations, the length of the output (FROM) field defaults to be the
current value of the internal variable LRECL. However, if the output data object is of a fixed length, the length of
the output field defaults to be the length assigned to the data object.

◊

For CVCH and CVHC operations, specification of length on the target (TO) field is ignored. The length of the field
is either double (CVCH) or half (CVHC) the length of the source field.

◊

For all other operations where a Type 2 fields are supported, a length specification is mandatory and so a control
statement error (ERROR 069) is returned.

◊

POS
P

Identifies the field definition as either Type 1, Type 2 or Type 4.

The mandatory expr expression that follows defines the location of the first byte of the field. If expr is followed by another
expr, then a Type 2 field definition is assumed where the second expr defines the position in storage of the last byte of the
field.

Specification of POS is mandatory in the following cases:

The field is the target of a MOD operation for which the optional MOD operation keyword has not been specified.
e.g.

 POS 51 = 'ABC' * Equivalent to: MOD POS 51 LENGTH 3 = 'ABC'

1.

The field is one of the terms in an IF, OR, AND compare operation. e.g.

 IF POS 1 = POS 22, 27 * Equivalent to: IF POS 1 LENGTH 6 = POS 22, 27

2.

The field position, expr references a numeric declared variable as the starting position within the work area from
which the remaining terms of the expression define an offset. Alternatively, if expr references a starting position
in the work area as a numeric integer constant from which a numeric declared variable defines an offset. e.g.

 DECLARE B1 BIN INI= 5 * Declared binary variable, B1 = 5.
 @OFF = 8 * @variable, @OFF = 8.

 MOD POS B1+@OFF = 'OK' * Equivalent to: MOD POS 13 LENGTH 2 = 'OK'
 MOD POS 5+B1 = 'X' * Equivalent to: MOD POS 10 LENGTH 1 = 'X'
 IF POS B1 = '123' * Equivalent to: IF POS 5 LENGTH 3 = '123'

3.

STYLE
Applicable only on field definitions specified as the source or target of a CVDATE operation, STYLE identifies the style of
date. A date field may be of binary, character, signed or unsigned packed decimal data type. See TYPE=B, C, U and P.

A American standard date format. (mmddyyyy)
B British (and European) standard date format. (ddmmyyyy)
D Number of days since 1900/01/01.
I International (ISO) standard date format. (yyyymmdd)
J Julian date format. (yyyyddd)
T 8-byte binary time-of-day (TOD) clock as obtained via the z/Architecture STCK instruction. Any TYPE

specification is ignored for STYLE=T.

See Date Data Types for detailed information on the styles of date supported by SELCOPY.

TYPE
TY

Applicable only on Type 1, Type 2 and Type 3 field definitions, TYPE specifies the data type of the field. If specified on a
Type 4 field definition, the TYPE parameter is ignored.

B Hexadecimal data representing a signed binary integer value.
C Character data. If a field defined as TYPE=C is used as the destination of a binary, packed decimal or

floating point value conversion, then TYPE=C is equivalent to TYPE=Z.
F Hexadecimal data representing a floating point value. TYPE=F sub-parameters define the format of the

floating point data with the default defined by environment option DEFAULTFP.

BIN | BFP IEEE-754 Base 2 Binary.
HEX | HFP IBM Base 16 Hexadecimal.
NATIVE | NAT Floating point format native to the local machine architecture.

P Hexadecimal data representing a signed packed decimal integer value.
U Applicable only to date fields identified in a CVDATE operation, TYPE=U identifies hexadecimal data

representing an unsigned packed decimal date value.
Z Character data representing a zoned decimal integer value.

Chapter 3. Data Elements and References Field Definitions

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 49

Default field data type is determined as follows:

For data type conversion operations (CVxx/CVDATE), the data type of the source and target fields are implied by
the operation keyword. e.g. CVBC treats the source field as TYPE=B and the target field as TYPE=C.

1.

For arithmetic operations (ADD, SUB, MULT, DIV), the data type is the same as the first operand in the operation
for which a data type is defined. This may be a field with a TYPE specification or a declared variable. If none of
the operands have an associated data type, then TYPE=P is default. e.g.

 ADD 4 AT 1 TO 4 AT 21 TYPE=B INTO 4 AT 101 TYPE=Z * Default TYPE=B.

2.

For the GENERATE operation, TYPE=P is default.3.

For all other operations, TYPE=C is default.4.

See Data Types for detailed information on the data types supported by SELCOPY.

Notes:

Return Code 8:
Any SELCOPY operation performed on a field which is located at a position within the work area or input record buffer, will
give a return code of 8 if the field occupies a position that falls outside the allocated work area buffer.

1.

Equated symbols:
Equated symbols may be used to represent any of these field definition types or any syntax element which constitutes part
of the field definition (e.g. expr). However, the equated symbol is still bounded by any restrictions imposed on the field
definition type it represents. e.g. The following gives an error because an implied MOD operation is invalid for Type 3 field
definitions.

 equ fldty1 pos 1 len 4 type=p * Type 1 field definition.
 equ fldty3 4 at 1 type=p * Type 3 field definition.
 fldty1 = 23 * OK.
 fldty3 = 23 * Returns ERROR 042.

2.

Internal Field Definitions

SELCOPY supports a number of internal field definitions that may be used in individual SELCOPY operations or variable
assignments.

These fields have named positions and are maintained by SELCOPY and may alter over the course of a SELCOPY program. The
positional name, length and data type of each internal field follows:

ARG

POS ARG is the position of a null terminated character string field of minimum length 80, which contains the complete program
parameter (argument) string as received by the SELCOPY executable. This includes any parameter strings, command line
control statements, control statement input file and/or report file output file specification on the SELCOPY invocation.

If the length of the argument string is less than 80, the string is padded with blanks up to 80 characters and the null terminator
(x'00') immediately follows the 80th character. If the length is longer than 80, the null terminator occurs immediately following
the last character of the argument string.

In the following invocation of SELCOPY...

 SELCOPY 'Parm 1' 'Parameter2' -ctl /home/xuser/ssparm01 -lst /tmp/ssparm01.lst

...the contents of the field at POS ARG are:

 'Parm 1' 'Parameter2' -ctl /home/xuser/ssparm01 -lst /tmp/ssparm01.lst

See also internal field PARM for input parameter strings only.

CBLNAME

Only applicable to SELCOPY in z/OS and z/VM CMS environments, POS CBLNAME is the position in storage of the loaded
CBLNAME options module.

The CBLNAME options module is a structure containing a number of fields of different length and data type. The CBLNAME
structure includes one or more variable length extensions, one for each licensed product element (SELCOPY, SELCOPYi and
CBLVCAT). The format of option flags and fields in this structure, may be derived from the CBLNAME assembly listing which
generates a CBLNAME DSECT from the CBLNAME Assembler macro.

Chapter 3. Data Elements and References Internal Field Definitions

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 50

The CBLNAME structure fields may be used for reference purposes only. Updates to flags bits or field data within the structure
will have no affect on the current (or any subsequent) execution of SELCOPY.

DATE

POS DATE is the position of the 8 character, ISO date format field within SELCOPY's DATE control block structure (yy/mm/dd).

The position, expressed as an offset from position DATE, length and data type of fields in the DATE control block structure are
as follow:

Position Length Type Example Description
DATE-36 4 Binary x'559B,9F6B' Number of seconds since 1970/01/01 00:00:00
DATE-32 4 Binary x'0000,03B9' Number of milli-seconds (1/1000 second) after the second.
DATE-28 4 Packed

Decimal
x'2015,188F' Julian Date - X'YYYY,DDDF' (where "YYYY" and "DDD" are the "year" and "day

of year" number respectively)
DATE-24 4 Unsigned

Packed
Decimal

x'0104,4110' Time of Day - X'0hhm,msst' (where "hh", "mm", "ss" and "t" are "hours",
"minutes", "seconds" and "tenths of second" respectively)

DATE-20 8 Character '07/07/15' USA Date - 'MM/DD/YY' (where "MM", "DD" and "YY" are "month of year", "day
of month" and "year of century" number respectively)

DATE-12 1 Character ' ' Filler - blank character.
DATE-11 8 Character '07/07/15' European Date - 'DD/MM/YY' (where "DD", "MM", and "YY" are "day of month",

"month of year" and "year of century" number respectively)
DATE-03 1 Character ' ' Filler - blank character.
DATE-02 2 Character '20' Century - 'CC' (where "CC" is "century" number)
DATE+00 8 Character '15/07/07' ISO Date - 'YY/MM/DD' (where "YY", "MM" and "DD" are "year of century",

"month of year", "day of month" number respectively)
DATE+08 1 Character ' ' Filler - blank character.
DATE+09 10 Character '10:44:11.9' Time of Day - 'hh:mm:ss.t' (where "hh", "mm", "ss" and "t" are "hours",

"minutes", "seconds" and "tenths of second" respectively)
DATE+19 1 Character ' ' Filler - blank character.
DATE+20 9 Character 'Tuesday ' Day of Week - 'Weekday' (where "Weekday" is the blank padded day name in

mixed case)
DATE+29 1 Character ' ' Filler - blank character.
DATE+30 4 Character ' 7th' Day of Month - 'nnst', 'nnnd', 'nnrd' or 'nnth' (where "nn" is the "day of

month" number)
DATE+34 1 Character ' ' Filler - blank character.
DATE+35 9 Character 'July ' Month of Year - 'Month' (where "Month" is the blank padded month name in

mixed case)
DATE+44 1 Character ' ' Filler - blank character.
DATE+45 8 Character '2015/188' Julian Date - 'YYYY/DDD' (where "YYYY" and "DDD" are the "year" and "day of

year" number respectively)
DATE+53 1 Character ' ' Filler - blank character.
DATE+54 5 Character 'Wk:27' Week of Year - 'Wk:ww' (where "ww" is 00-52, the "week of year" number)

Sunday is day 1 of the week. If 1st January falls on Thursday, Friday or Saturday
(day 5, 6 or 7), the first week of the year is week 0 (Wk:00), otherwise it is week 1
(Wk:1).

DATE+59 1 Character ' ' Filler - blank character.
DATE+60 4 Binary x'0000,A4CF' Number of days since 1st Jan 1900.
DATE+64 4 Binary x'0000,96FB' Number of seconds since midnight (00:00:00).
DATE+68 4 Binary x'000E,8AA8' Number of micro-seconds (1/1000000 second) after the second.
DATE+72 4 Binary x'0000,03E8' Elapsed milli-seconds (1/1000 second) since the start of the program.

DSN

POS DSN is the position of a fixed length 255 character field containing the name of the last input or output data object
processed by SELCOPY during selection time processing.

For input and output files (data sets), this is a full fileid (DSN) of the file processed. i.e. For hierarchical file systems, it is the
complete fileid reference including disk letter (where applicable) and directory path. For native z/OS data sets, it is the DSN with
TSO or Security Manager (ACF) userid prefix and parenthesised member name if applicable. For native z/VM CMS files, it is

Chapter 3. Data Elements and References CBLNAME

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 51

the filename, filetype and filemode with single intervening blank characters.

For SELCOPY I/O operations that perform dynamic allocation, the DSN field contains the fileid as specified on the DSN
parameter of the READ or WRITE operation. For SELCOPYi list or ODBC database input, the DSN field contains the
SELCOPYi list command, SQL query (SELECT) statement or database table name as specified on the READ operation LIST,
SQL or TABLE parameters respectively.

Dynamic Allocation
The DSN field value for a particular data object is established when the object is opened. Therefore, when the
argument on a DSN, LIST, SQL or TABLE parameter is a field definition, then an update to this field and subsequent
re-open of the associated file name (fname) reference, will also update the contents of the DSN field.

DIR/DIRDATA Input
The DSN field does not reflect the full fileid of data objects read with the DIR or DIRDATA parameter. For DIR or
DIRDATA input of z/OS PDS or PDSE members, the DSN field contains the DSN of the PDS/PDSE library only. For
DIR or DIRDATA input of z/VM CMS or hierarchical file system files, the DSN field contains the generic fileid with
wildcards, as specified on READ statement.

The PDS/PDSE member name, CMS file name or hierarchical file system fileid being processed at any time during
selection processing, may be established via the directory input record. For DIRDATA input, the data object's directory
record (as opposed to one of its data records) may be identified using an IF DIR test executed following a READ
DIRDATA operation on the associated fname.

Concatenation
The CAT sub-operation may be specified following a READ operation to concatenate input data objects. Following
concatenated data object input, the contents of the DSN field are updated to reflect the fileid (DSN), SELCOPYi list
command, ODBC SQL query statement or database table name of the particular data object from which the record
was read.

FHDR

POS FHDR refers to the position of one of the following:

A field containing the table column headers of the last input database result table read using ODBC or the last
SELCOPYi list input object. The specified (or default) separator character is used to separate each column name in
this FHDR field. The field is of variable length equal to the LRECL of input data.

Immediately following the generated column headers field is a field of equal length which contains the underlining for
the headers field. This comprises minus signs, except for the separator characters which match those in the header
field.

1.

A fixed length 128 character field containing the file header record of the last Micro Focus variable length format file
(RECFM=MFV) processed by SELCOPY.

Processing of Micro Focus variable length format files will automatically bypass this header record on input and
automatically generate a header record on output.

2.

FNAME

POS FNAME is the position of a fixed length 8 character field containing the file name (fname) assigned to the last data object
processed by SELCOPY.

Concatenation
The CAT sub-operation may be specified following a READ operation to concatenate input data objects. Following
concatenated data object input, the contents of the FNAME field are updated to reflect the file name associated with
the particular data object from which the record was read.

FSIZE

POS FSIZE is the position of a 4-byte binary field containing the size of the last file processed for input or output.

For files belonging to a hierarchical file system, the file size is equal to the number of bytes in the file at the time it was opened.
For all other types of data object, the file size value is zero (0).

HEAD

POS HEAD is the position of a fixed length 156 character field containing the text of the first header line displayed at the top of
each page in the SELCOPY list output. HEAD+160 is the position of the fixed length 156 character field containing the hyphen
(-) underline characters of the second header line. Each hyphen (-) is at an offset of 160 characters from the character under
which it appears in the report output.

The default HEAD field title text identifies the SELCOPY product version and licensed entity details and is followed by the
execution timestamp and page number. However, the header text and corresponding underline output may be initialised via the
HEAD environment option and later changed during selection time processing via updates to the HEAD field.

Chapter 3. Data Elements and References DSN

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 52

PARM

POS PARM is the field position of a null terminated character string of minimum length 80, which contains only the parameter
string as received by the SELCOPY executable.

The parameter string comprises one or more character constants that each generates a parameter variable equate in the
executing SELCOPY program.

If the length of the parameter string is less than 80, the string is padded with blanks up to 80 characters and the null terminator
(x'00') immediately follows the 80th character. If the string is longer than 80, the null terminator occurs immediately following the
last character of the parameter string.

In the following invocation of SELCOPY...

 SELCOPY 'Parm 1' 'Parameter2' -ctl /home/xuser/ssparm01 -lst /tmp/ssparm01.lst

...the contents of the field at POS PARM are:

 'Parm 1' 'Parameter2' <59 trailing blanks follow>

See also internal field ARG which contains not only the parameter string but also any command line control statements, control
statement input file and report output file specification that occurs on the SELCOPY invocation.

RBA

POS RBA is the position of a 4-byte binary field containing the junior 4 bytes of an 8-byte relative byte address (RBA), i.e.
RBA-4 is the position of the full 8-byte binary field. Note that, an RBA is the offset of a particular record from the start of the file
to which it belongs.

The RBA field will contain the offset of a record belonging to the last file processed by SELCOPY. For input files, the RBA will
be that of the last record read. For output files, the RBA will be that of the next output record to be written, not the last record
written.

For file sizes in excess of 4G, the senior 4 bytes of the RBA at position RBA-4 will be non-zero.

On input, the RBA field may be used to save the current record's RBA before proceeding to read further records form the same
input file. The saved RBA may be used later to re-read the record directly using a READ by RBA operation.

SCALE

POS SCALE is the position of a character field of fixed length equal to the value of the DATAWIDTH option. The SCALE field
contains the scale used in the footer line displayed below printed text in the print block of the SELCOPY list output.

UXADIFF

POS UXADIFF is the position of a binary field containing a storage address of the position referenced by internal variable, DIFF
(i.e POS DIFF). If DIFF is unset (DIFF = NULL), the UXADIFF field contains zeros (0). UXADIFF is an 8-byte field for 64-bit
SELCOPY, otherwise it is a 4-byte field.

The value assigned to DIFF and the UXADIFF field are both set automatically following execution of an IF character compare
operation on a single field location. Furthermore, any direct assignment of variable, DIFF, will also update the contents of the
UXADIFF field. Note that DIFF and UXADIFF are unchanged for a character compare operation on multiple field locations (i.e.
an IF range test).

If no differences are found in a character compare operation on a single field location, the DIFF value and UXADIFF field are
both unset, i.e. NULL and reset to zero (0). Otherwise, they reference the position of the first unmatched character within the
first field (or character variable) element of the compare operation.

The POS DIFF address in the UXADIFF field is in big endian format, regardless of the underlying processor architecture on
which SELCOPY is running. It is equivalent to the base address plus the value of DIFF minus 1.

UXATPTR

POS UXATPTR is the position of a binary field containing a storage address of the position referenced by the default @variable,
@ (i.e. POS @). If @ is unset (@ = NULL), the UXATPTR field contains zeros (0). UXATPTR is an 8-byte field for 64-bit
SELCOPY, otherwise it is a 4-byte field.

The value assigned to @ and the UXATPTR field are both set automatically following execution of an IF character compare
operation on multiple field locations (i.e. an IF range test), where no PTR (or PTR=@) has been specified. Furthermore, any
direct assignment of @variable, @, will also update the contents of the UXATPTR field.

The UXATPTR address field may also be updated directly with a 4-byte, big endian format storage address in order to point
POS @ at that location. An advanced use of this feature would be to chain through z/OS system control blocks (see "IBM z/OS
MVS Data Areas" manuals) in order to obtain information about the environment in which SELCOPY is executing. e.g. The
following will obtain the RACF userid assigned to the current task:

Chapter 3. Data Elements and References PARM

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 53

 pos uxatptr = x'0000,0010' !print from @ ty=d l=016 * @-> Address of CVT.
 pos uxatptr = 4 at @ !print from @ ty=d l=016 * @-> CVT.
 pos uxatptr = 4 at @ !print from @ ty=d l=016 * @-> TCB Ptrs.
 pos uxatptr = 4 at @+012 !print from @ ty=d l=112 * @-> ASCB.
 pos uxatptr = 4 at @+108 !print from @ ty=d l=208 * @-> ASXB.
 print from @+192 l=8 * ASXBUSER.
 pos uxatptr = 4 at @+200 !print from @ ty=d l=032 * @-> ACEE.
 print from @+021 l=8 * RACF userid. * ACEEUSRI.

If no matches are found by a character compare range test operation with no PTR parameter or with PTR=@ specified, the @
value and UXATPTR field are both unset, i.e. NULL and reset to zero (0). Otherwise, they reference the position of the first
character of the first matching field within the range of fields tested.

The POS @ address in the UXATPTR field is in big endian format, regardless of the underlying processor architecture on which
SELCOPY is running. It is equivalent to the base address plus the value of @ minus 1.

UXDW

POS UXDW is the position of a 4-byte binary field containing the print output data width value as defined by the DATAWIDTH
option.

Note that data width is established during control statement analysis and cannot be updated during selection time processing.
i.e. The data width value is not changed by an update to the UXDW field value.

UXINCNT

POS UXINCNT is the position of a binary field containing the count of records read from the prime input data object. UXINCNT
is an 8-byte field for 64-bit SELCOPY, otherwise it is a 4-byte field.

The UXINCNT field value is equal to the value of internal variable, INCOUNT for the prime input data object. Note that
INCOUNT values are maintained by SELCOPY and cannot be updated by a variable assignment statement. Similarly, the
INCOUNT value for the prime input data object is not changed by an update to the UXINCNT field value.

For READ DIRDATA input, a separate count is maintained for input records of type directory and data. If the prime input data
object is read with DIRDATA, then both the INCOUNT variable and UXINCNT field values reflect the record count of the type of
record (directory or data) last read from the prime input data object.

If prime input comprises a number of data objects, read using the DIRDATA option and/or concatenated using the CAT
sub-operation, then UXINCNT is reset to 1 following input of the first data record from each of the data objects.

Synonym: UXINCOUNT

UXLINE

POS UXLINE is the position of a 4-byte binary field containing the line number of the next record to be written to the SELCOPY
list output. The line number value is the line number within the current page of output.

The maximum number of lines in each page of list output is defined by the PAGEDEPTH option and may be interrogated at
selection time using the UXPD field. The number of lines remaining in the current page of output may be obtained from the
UXLINEREM field.

The UXLINE field value is equal to the value of internal variable, LINE. The value of LINE may be updated via a variable
assignment statement during selection time processing. Doing this will also update the UXLINE field value and the next
SELCOPY list output record will either insert blank lines so that the record is written at the new line number, or throw a new
page so that the record is written on the first available line following the page header lines. Note, however, that the LINE value
is not changed by an update to the UXLINE field value.

UXLINEREM

POS UXLINEREM is the position of a 4-byte binary field containing the number of lines remaining in the current page of the
SELCOPY list output.

The maximum number of lines in each page of list output is defined by the PAGEDEPTH option and may be interrogated at
selection time using the UXPD field. The page line number of the next record to be written to the list output may be obtained
from the UXLINE field.

Note that page depth is established during control statement analysis and cannot be updated during selection time processing.
i.e. The page depth value is not changed by an update to the UXLINEREM field value.

UXLRECL

POS UXLRECL is the position of a binary field containing the value of the internal variable, LRECL. UXLRECL is an 8-byte field
for 64-bit SELCOPY, otherwise it is a 4-byte field.

Chapter 3. Data Elements and References UXATPTR

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 54

The value assigned to LRECL and the UXLRECL field are both set automatically to be the length of the last input record read
via the READ operation. Furthermore, any direct assignment of variable LRECL will also update the contents of the UXLRECL
field. Note, however, that the LRECL value is not changed by an update to the UXLRECL field value.

UXPD

POS UXPD is the position of a 4-byte binary field containing the maximum number of lines in each page (page depth) of the
SELCOPY list output, as defined by the PAGEDEPTH option.

Note that page depth is established during control statement analysis and cannot be updated during selection time processing.
i.e. The page depth value is not changed by an update to the UXPD field value.

UXPGNO

POS UXPGNO is the position of a 4-byte packed decimal field containing the current page number of the SELCOPY list output.

UXPW

POS UXPW is the position of a 4-byte binary field containing the page width value as defined by the PAGEWIDTH option. The
page width is applied to header lines written to the SELCOPY list output and also governs the width of PRINT TYPE=D output.

Note that page width is established during control statement analysis and cannot be updated during selection time processing.
i.e. The page width value is not changed by an update to the UXPW field value.

UXREASCD

Applicable only to z/VM CMS, POS UXREASCD is the position of a 4-byte binary field containing the value of the internal
variable, REASCD, the reason code returned by a CMS function. See also UXRETSYS which contains the return code returned
by a CMS function.

The value assigned to REASCD and the UXREASCD field are both set automatically following execution of a CMS function.
e.g. The UTIME operation involves execution of a CMS function that sets the value assigned to REASCD and the UXREASCD
field. Any direct assignment of variable REASCD will also update the contents of the UXREASCD field, however, the REASCD
value is not changed by an update to the UXREASCD field value.

UXREPLYL

POS UXREPLYL is the position of a 4-byte binary field containing the length of text entered by the user following the last
execution of a LOG operation with parameter REPLY.

For any particular LOG operation on which REPLY is specified, the value in the UXREPLYL field may not exceed the length of
the REPLY field.

UXRETCD

POS UXRETCD is the position of a 4-byte binary field containing the value of the internal variable RETCD, SELCOPY's current
return code. By default, the current SELCOPY return code is the highest return code value set by SELCOPY at any particular
time during the program execution.

The value assigned to RETCD and the UXRETCD field are both set automatically by SELCOPY if a return code condition is
triggered and the return code value exceeds the highest value set so far during the program execution.

Any direct assignment of variable RETCD will also update the contents of the UXRETCD field, however, the RETCD value is
not changed by an update to the UXRETCD field value. Note that the return code may be updated to be any value as a result of
a direct assignment on variable RETCD, regardless of whether it exceeds the current return code value.

UXRETSYS

POS UXRETSYS is the position of a 4-byte binary field containing the value of the internal variable RETSYS. This is the last
return code set by the system following a command or function initiated by SELCOPY during the course of the program
execution. This includes commands executed via the CP and SYSTEM operations and system functions performed by the
UTIME and XV operations.

The value assigned to RETSYS and the UXRETSYS field are both set automatically following execution of a system command
or function. Any direct assignment of variable RETSYS will also update the contents of the UXRETSYS field, however, the
RETSYS value is not changed by an update to the UXRETSYS field value.

Chapter 3. Data Elements and References UXLRECL

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 55

VOLID

POS VOLID is the position of a fixed length 32 character field which, for Microsoft Windows contains the volume label of the
disk to which the last file processed by SELCOPY belongs. On iSeries, Linux and Unix operating systems, this field contains the
host name (node name) of the system on which SELCOPY is running.

The volume label or host name value is either truncated at 32 characters or padded with blanks. SELCOPY return Code 8 is set
(see RETCD and UXRETCD) if the VOLID field is referenced by an operation and the last file processed is not a local or
networked disk file. e.g. READ STDIN and WRITE STDOUT.

Data Types
Constants, variables and field definitions are data elements that have an explicit or implied data type. For all constants, variables
and fields, the data type is the format in which the assigned value is held in storage.

See Internal Field Definitions for the data types of SELCOPY's internal fields.

Data types may be split into 3 categories: Character, Date and Numeric.

Character Data Types

Character data types are interpreted as printable ASCII or EBCDIC character text.

By default, character text is interpreted as being in the encoding format (ASCII or EBCDIC) as defined by the machine architecture
on which SELCOPY executes. Where applicable, this may be overridden on individual SELCOPY operations using keyword
identifiers ASC (ASCII) or EBC (EBCDIC) as appropriate.

Character constants, variables and field definitions may be referenced within a character compare operation and also support
position offsets within the assigned character text value.

The character data types recognised and supported by SELCOPY and the data elements to which they apply, are discussed below.

Character Fixed Length

A text string value of fixed length.

Constants:
Character constants are all of fixed length and their specification is discussed earlier in this chapter.

Variables:
Declared variables of this data type are declared using keyword identifier CHAR, with optional length value enclosed in
parentheses delimiter characters. e.g.

 DECLARE POSTCODE CHAR(10) * Character fixed length 10.

Fields:
A field is at a position and length defined by the field definition syntax specified on the operations in which it is
referenced. The field definition syntax includes data type specification, TYPE=C, to indicate character data type. For
MOVE, MOD and IF character compare operations, TYPE=C is default. e.g.

 MOD POS 11 LENGTH 5 TYPE=C = '1' FILL='1' * Value: 11111
 ADD 12345 TO 5 AT 11 TYPE=C * Becomes: 23456

Character Variable Length

A text string value of variable length.

The source field for this data type has a length equal to the maximum defined length and a 2-byte binary field prefix containing
only the length of the value text. Residual text occupying the area of the source field beyond the current value's length, is
unchanged.

Variables:
Only declared variables may be defined with this data type. These may be declared using keyword identifier VARCHAR, with an
optional maximum length value enclosed in parentheses delimiter characters. e.g.

Chapter 3. Data Elements and References VOLID

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 56

 DECLARE TITLE VARCHAR(64) * Character variable, max length 64.
 DECLARE VVAR VCH(100) INI 'XY'

 PRINT 'VVAR is:-->' VVAR '<--' * Gives: "VVAR is:-->XY<--"
 VVAR = 'ABCDEF'
 PRINT 'VVAR is:-->' VVAR '<--' * Gives: "VVAR is:-->ABCDEF<--"

Character Varying Length

Character varying length data type is identical to the character variable length data type except that each character of residual
text occupying the area of the source field beyond the current value's length, is replaced with the prevailing pad character
(OPTION FILL). The default pad character is blank.

This data type matches the PL/1 definition of data items declared with the CHARACTER VARYING attribute. Data written by
PL/1 based on this data type will have the 2-byte binary prefix followed by the character field of maximum text length.

Variables:
Only declared variables may be defined with this data type. These may be declared using keyword identifier CHARVARYING,
with an optional maximum length value enclosed in parentheses delimiter characters. e.g.

 DECLARE VNAME CHARVARING(32) * Character variable, max length 32.

Character Variable Null Terminated

A text string value of variable length terminated by the null character (x'00').

The source field for this data type has a length equal to the maximum defined length plus 1 for the null terminator. This data
type matches the PL/1 definition of data items declared with the CHARACTER VARYINGZ attribute.

Variables:
Only declared variables may be defined with this data type. These may be declared using keyword identifier NTS, with an
optional maximum length value enclosed in parentheses delimiter characters. e.g.

 DECLARE STRCHR NTS(100) * Character null terminated max length 100.

Date Data Types

Date data types identify data interpreted as a chronological date and are currently supported by the CVDATE operation only.

Date constants may be specified as a CVDATE source value only, whereas date field definitions are valid as either the source or
target of the CVDATE operation.

Date data types are not supported natively for declared variables. However, a variable of source data type character, binary or
decimal (scale=0) may be used with a STYLE or FORMAT specification in place of a field definition of TYPE=C, TYPE=B or
TYPE=P respectively.

Each of the date data types supported by SELCOPY, may be used to represent the different supported styles of date format.
Specifically, these are:

STYLE Option Date Format Digits
A American (USA) mmddccyy or mmddyy (1)

B British/European ddmmccyy or ddmmyy (1)

D Number of days starting 1900/01/01 +n or -n

I International Standard (ISO) ccyymmdd or yymmdd (1)

J Julian ccyyddd or yyddd (1)

T z/Architecture TOD clock X'xxxx,xxxx,xxxx,xxxx'

Legend:

cc 2-digit century number.
yy 2-digit year of century number.
mm 2-digit month of year number.
dd 2-digit day of month number.
ddd 3-digit day of year number.
n decimal integer value.
x hexadecimal digit.

Chapter 3. Data Elements and References Character Variable Length

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 57

Notes:

ISO, American, European and Julian format dates support source date values with or without a 2-digit century. However,
CVDATE output of any of these date formats, will always contain a 4-digit year. Return code 8 is set if the target field is
too small.

A source date value without a century will have an implied century of 20 for years 00-49, or 19 for years 50-99.

1.

Date data types recognised and supported by SELCOPY and the data elements to which they apply, are discussed below.

Character Date

Character (TYPE=C) data may have a date interpretation when referenced as the source or target of a CVDATE operation.

If specified as the target of a CVDATE operation, a character field definition or variable may be formatted using a DATE
FORMAT string. If no formatting is performed, the target character date value will contain only numerical digits and no
punctuation. e.g. '2011/03/15' (STYLE=I) would be left-adjusted in the target field as '20110315'.

If specified as the source of a CVDATE operation, the date value represented by a character constant or field definition is
dependent on the specified STYLE.

Character Date Source

In character date source values, numeric characters (0-9) correspond to decimal numeric digits (0-9) respectively and all
non-numeric characters are ignored. Therefore, non-numeric characters may occur at any position within the character source
(e.g. as year/month/day delimiters) without affecting the date value.

Each style of date has a valid number of decimal numeric digits that must be specified. If the number of specified digits are
invalid, then a control statement error will occur for date character constants, otherwise return code 8 is set for the CVDATE
operation and no date conversion is attempted.

The date value is interpreted by evaluating the character data from right to left (i.e. highest to lowest storage address) and
establishing values for the individual date components (e.g. year, month, day) that constitute the date style specified.

Having identified the individual date components, return code 8 is set and date interpretation is cancelled if a component does
not satisfy the component limits . i.e. month number must be in the range 1-12, day of month number in the range 1-28/29/30/31
(depending on the month) and day of year number in the range 1-365/366 (depending on the year.)

STYLE=A and STYLE=B
STYLE=A (USA format) and STYLE=B (British/European format) character dates must contain either 6 or 8 numeric
digits.

If the character date has 6 digits, SELCOPY treats the right-most 2 digits as a year specification with an implied
century of 20 for years 00-49, or 19 for years 50-99. If the date has 8 digits, SELCOPY treats the right-most 4-digits as
the year specification with explicit century number.

Thereafter, the next 2 pairs of digits processed from right to left correspond to the day then numbers (STYLE=A), or
month then day numbers (STYLE=B).

STYLE=D
STYLE=D character dates must include at least 1 numeric digit representing the day number starting at 1900/01/01.

STYLE=I (default)
STYLE=I (ISO format) character dates must contain either 6 or 8 numeric digits.

SELCOPY treats the right-most 2 digits as the day number and the next 2 digits as the month number. If the character
date has 6 digits, SELCOPY treats the next 2 digits as the year specification with an implied century as described for
STYLE=A and B. Otherwise, the next 4-digits constitute the year specification with explicit century number.

STYLE=J
STYLE=J (Julian format) character dates must contain either 5 or 7 numeric digits.

SELCOPY treats the right-most 3-digits as the day of year number. If the character date has 5 digits, SELCOPY treats
the next 2 digits as the year specification with an implied century as described for STYLE=A and B. Otherwise, the
next 4-digits constitute the year specification with explicit century number.

STYLE=T
Dates of STYLE=T (TOD clock) are of TYPE=B (8-byte binary) and so no character date interpretation is performed.

 Examples of source date character values:

Chapter 3. Data Elements and References Date Data Types

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 58

Character Data
(Quoted Constant)

Date Value
(FORMAT='yyyy/mm/dd')

'2012/031' STYLE=J 2012/01/31

'12/11/71' STYLE=B 1971/11/12

'40,789' STYLE=D 2011/09/04

'"06","17","07"' STYLE=A 2007/06/17

'02#bb11#bbb1983' STYLE=A 1983/02/11

'200/80/703' STYLE=I 2008/07/03

'315' STYLE=D 1900/11/11

Constants:
Character date constant elements are all of fixed length and their specification is discussed earlier in this chapter.

Fields:
The field definition syntax includes data type specification, TYPE=C, to indicate character data type and a date STYLE
specification. TYPE=C, STYLE=I is default. e.g.

 CVDATE '2014/07/12' TO 1 FORMAT='yyyy/ddd' * Value: 2014/193
 CVDATE POS 1 LENGTH 8 TYPE=C STYLE=J TO 6 AT 11 STYLE=D * Value: 041831

Binary Date

A TYPE=B binary (base-2) integer value may be interpreted as a date when referenced as the source or target of a CVDATE
operation. This integer value is a big-endian, binary representation of the decimal digits that constitute a date value.

For any given date, the value will be different depending on its style attribute. e.g. ISO date, 2015/08/25, has a decimal value
20150825 (STYLE=I) or 2015237 (STYLE=J). Represented as hex constants, these decimal values have binary equivalents
x'0133,7A29' (STYLE=I) and x'001E,C005' (STYLE=J) respectively.

Note that a source binary integer that does not represent a valid date of the style specified will cause the CVDATE operation to
fail with return code 8.

Binary date values of STYLE=D are of practical use when date arithmetic is required. e.g. A character format date may be
converted to binary STYLE=D before adding or subtracting a number of days then converting it back to character display
format. A similar method may be used to subtract one date from another in order to determine a number of elapsed days.

A date value of STYLE=T is a binary value of length 8-bytes. Specification of TYPE on a STYLE=T date value is ignored.

Constants:
Binary date constants are represented as hex character constants with TYPE=B and STYLE parameters. Their
specification is discussed under Date Character Constants.

Fields:
Binary date field definition syntax includes data type specification, TYPE=B and a date STYLE specification. e.g.

 CVDATE 4 AT 1 TYPE=B STYLE=J TO 11 FORMAT='yyyy-mm-dd' * Binary Julian.
 CVDATE NOW TO 4 AT 31 TYPE=B STYLE=D * Binary #days.
 CVDATE 8 AT 101 STYLE=T TO 4 AT 41 TYPE=B STYLE=I * Binary TOD->ISO.

Unsigned Decimal Date

TYPE=U unsigned packed decimal integer values are supported only as a date value specification on the CVDATE operation.

The decimal digits that constitute a date value may be in a packed, big endian format so that each digit of the decimal value is
represented by a hex code (x'0'-x'9'). The style of date determines the number of digits in the packed value and so the length of
the packed data.

Return code 8 is set for the CVDATE execution if the unsigned packed decimal value does not represent a valid date in the
specified style.

Examples of unsigned packed decimal date values:

Unsigned Decimal
(Hex Constant)

Date Value
(FORMAT='yyyy/mm/dd')

X'02012031' TYPE=U STYLE=J 2012/01/31

X'030563' TYPE=U STYLE=B 1963/05/03

X'01221993' TYPE=U STYLE=A 1993/01/22

X'20131030' TYPE=U STYLE=I 2013/10/30

X'11213' TYPE=U STYLE=D 1930/09/13

Chapter 3. Data Elements and References Character Date

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 59

Constants:
Unsigned decimal date constants are represented as hex character constants with TYPE=U and STYLE parameters.
Their specification is discussed under Date Character Constants.

Fields:
Unsigned decimal date field definition syntax includes data type specification, TYPE=U and a date STYLE
specification. e.g.

 CVDATE '2015/08/25' STYLE=I TO 4 AT 11 TYPE=U STYLE=A * Value: X'0825,2015'
 CVDATE 4 AT 1 TYPE=U STYLE=J TO 1 FORMAT='yyyy/ddd' * Unsigned Julian.

Signed Decimal Date

A TYPE=P signed packed decimal integer value may be interpreted as a date when referenced as the source or target of a
CVDATE operation.

The decimal digits that constitute a date value may be in a packed, signed, big endian format so that each digit of the decimal
value is represented by a hex code (x'0'-x'9') and the value's sign is represented by a hex code (x'A'-x'F') in the least significant
position. Sign codes x'A', x'C', x'E' and x'F' indicate a positive decimal value (+) whereas codes x'B' and x'D' indicate a negative
value (-).

The style of date determines the number of digits in the packed value and so the length of the signed, packed data. Return code
8 is set for the CVDATE execution if the signed packed decimal value does not represent a valid date in the specified style.

Signed packed decimal dates values of STYLE=D are useful when date arithmetic is required. e.g. A character format date may
be converted to signed packed decimal STYLE=D before adding or subtracting a number of days then converting it back to
character display format.

Examples of signed packed decimal date values:

Signed Decimal
(Hex Constant)

Date Value
(FORMAT='yyyy/mm/dd')

X'2012,131C' TYPE=P STYLE=J 2012/05/10

X'0300,908C' TYPE=P STYLE=B 2008/09/30

X'0122D' TYPE=P STYLE=D 1899/08/31

X'0C' TYPE=P STYLE=D 1899/12/31

Note that x'C' and x'D' are SELCOPY's preferred representation of positive and negative sign
codes, and are used in a TYPE=P target value of a CVDATE operation.

Constants:
Signed decimal date constants are represented as hex character constants with TYPE=P and STYLE parameters.
Their specification is discussed under Date Character Constants.

Fields:
Signed decimal date field definition syntax includes data type specification, TYPE=P and a date STYLE specification.
e.g.

 CVDATE '1999/12/13' STYLE=I TO 8 AT 11 TYPE=P STYLE=D * PD #days.
 ADD '22' TO 8 AT 11 TYPE=P * +22 days.
 CVDATE 8 AT 11 TYPE=P STYLE=D TO 1 FORMAT='yyyy/mm/dd' * Value: 2000/01/04

Numeric Data Types

Numeric data types identify computational data.

Constants, variables and field definitions that are numeric, or are character with a numeric interpretation, may be used in arithmetic
and arithmetic compare operations.

Numeric data types recognised and supported by SELCOPY and the data elements to which they apply, are discussed below.

Binary Integer

A binary (base-2) integer value.

The precision (number of binary digits) that may be attributed to a binary integer value and whether or not it is signed or
unsigned, is determined by the length of the source field. A binary integer source field may be between 1 and 4-bytes in length
with the following implications:

Chapter 3. Data Elements and References Unsigned Decimal Date

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 60

Field Length Signed/Unsigned Maximum Precision
1 Unsigned 8
2 Signed 15
3 Signed 23
4 Signed 31

Regardless of the processor architecture on which SELCOPY is running, hex representation of binary integer source fields is in
big-endian format. e.g.

 DECLARE BINVAR BIN(3) INI=100
 PRINT "x'" &BINVAR FMT="xx," "'" * Prints x'00,00,64', not x'64,00,00'

Constants:
Binary integer constants are represented as hexadecimal values their specification is discussed earlier in this chapter.

Variables:
Declared variables of this data type are declared using keyword identifier BIN, with optional length value enclosed in
parentheses delimiter characters. e.g.

 DECLARE TOTALS BIN(4) * Signed binary integer, precision 31.

Fields:
Binary integer field definition syntax includes data type specification, TYPE=B. For CVBx operations, TYPE=B is
default. e.g.

 IF POS 33 LENGTH 4 TYPE=B > 80 * Arithmetic compare.
 THEN SUB 12 FROM 4 AT 33 TYPE=B * Subtract 12.
 THEN CVBC 33, 36 TO 101 FMT='s,ss9' * Convert binary to character.

Decimal Integer

A signed decimal integer value.

A decimal integer value is stored in a packed decimal source field. Packed decimal values are supported by SELCOPY on all
operating platforms and are always represented in big endian format. Each decimal digit of the decimal integer value is
represented by a hex code (x'0'-x'9') and the value's sign is represented by a hex code (x'A'-x'F') in the least significant position
of the field. Sign codes x'A', x'C', x'E' and x'F' indicate a positive decimal value (+) whereas codes x'B' and x'D' indicate a
negative value (-).

The precision (number of decimal digits) that may be attributed to a decimal integer value is determined by the length of the
source field. Since all but 1 of the bytes in a signed packed decimal field can represent 2 decimal digits, the maximum precision
of a decimal value is (2xField_Length)-1, where 1 <= Field_Length <= 16.

Source Field Maximum Precision Decimal Value
x'1C' 1 +1
x'00001C' 5 +1
x'0003426F' 7 +3426
x'0003426D' 7 -3426
Note that x'C' and x'D' are SELCOPY's preferred representation of positive and negative sign
codes, and are used in the target field of a CVxP operation.

Constants:
Specification of decimal integer constants is discussed earlier in this chapter.

Variables:
Declared variables of this data type are declared using keyword identifier DEC, with an optional precision value (but no
scale value) enclosed in parentheses delimiter characters. e.g.

 DECLARE FILE_COUNT DEC(7) * Decimal integer, precision 7 (field length 4).

The packed decimal source field will occupy the minimum length required to accommodate the variable's precision.

Fields:
Packed decimal field definition syntax includes data type specification, TYPE=P. For CVPx and arithmetic operations
(ADD, SUB, MULT and DIV), TYPE=P is default. e.g.

 IF POS 1 LENGTH 8 TYPE=P <> 23 * Arithmetic compare.
 THEN ADD 12 TO 8 AT 1 * Add 12. (Default TYPE=P)
 THEN DIV 8 AT 1 TYPE=P BY 4 AT 33 TYPE=B * Divide by binary field value.
 THEN CVPC 1, 8 TO 81 FMT='s,ss9' * Convert packed decimal to char.

Chapter 3. Data Elements and References Binary Integer

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 61

Zoned Decimal Integer

A signed zoned decimal integer value.

A zoned decimal integer value is stored in a zoned decimal source field. Zoned decimal values are supported by SELCOPY on
all operating platforms and are always represented in EBCDIC, big endian format. If the base code page encoding scheme
used by the local system is ASCII, a zoned decimal source field referenced by a SELCOPY operation will be converted to
EBCDIC before being processed, and then converted back to ASCII if the value has been updated.

Each digit of the zoned decimal integer value is represented by one byte in the EBCDIC source field. The right-most 4 bits of the
byte denote the number which is the digit value represented as a hex code (x'0'-x'9').

For all digits except the least significant (right-most) digit, the left-most 4 bits of the byte denote the zone. The zone bits contain
a fixed hex code (x'F') so that the zone and number bits together constitute a printable EBCDIC character value corresponding
to the decimal digit. i.e. X'F0' to x'F9' is EBCDIC characters 0 to 9.

The left-most 4 bits of the least significant byte of the EBCDIC source field, denote the value's sign. Like packed decimal, sign is
represented by a hex code (x'A'-x'F') with codes x'A', x'C', x'E' and x'F' indicating a positive decimal value (+) and codes x'B' and
x'D' indicating a negative value (-). Note, however, that SELCOPY only supports zoned decimal values with the industry
preferred sign codes: x'C', x'D' or x'F'.

The precision (number of decimal digits) that may be attributed to a decimal integer value is equal to the length of the source
field.

Character Print Decimal Value Source (EBCDIC) Source (ASCII)
1234 +1234 x'F1F2F3F4' x'31323334'
95C +953 x'F9F5C3' x'393543'

123M -1234 x'F1F2F3D4' x'3132334D'
3J -31 x'F3D1' x'314A'

4 Note that x'F' and x'D' are SELCOPY's preferred representation of positive and negative
zoned decimal sign codes, and are used in the target field of a CVxZ operation.

Constants:
Specification of zoned decimal integer constants is discussed earlier in this chapter.

Fields:
A zoned decimal integer field definition must include data type specification, TYPE=Z. Alternatively, for field definitions
that are not Type 4, TYPE=C may be used. e.g.

 ADD 4 AT 1 TYPE=B TO 8 AT 21 TYPE=Z * Add binary integer to a zoned int.
 CVZC 21, 28 TO 31 FMT='£ s,ss9 DR' * Convert zoned to formatted char.

Decimal Fixed Point

A signed decimal fixed point (rational number) value.

A decimal fixed point value has both a precision and scale (p,s) and is stored in a packed decimal source field as described for
decimal integer values. The precision identifies the maximum number of decimal digits that may be attributed to the decimal
fixed point value, whereas scale identifies the number of those digits that are reserved for the fraction. e.g. A value 123.45 has
precision and scale of (5,2).

As for any decimal number representation, the fraction digits occupy the least significant positions. For decimal fixed point
values, these correspond to the least significant positions of the packed decimal source field before the sign code.

Constants:
Specification of decimal fixed point constants is discussed earlier in this chapter.

Variables:
Declared variables of this data type are declared using keyword identifier DEC, with precision and scale value
enclosed in parentheses delimiter characters.

 DECLARE AREA DEC(6,2) * Decimal precision 6, scale 2 (field length 4).

The packed decimal source field will occupy the minimum length required to accommodate the variable's precision.

Fields:
Packed decimal field definition syntax does not support fixed point specification.

Zoned Decimal Fixed Point

A signed zoned decimal fixed point (rational number) value.

Chapter 3. Data Elements and References Zoned Decimal Integer

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 62

SELCOPY supports interpretation of a decimal point within zoned decimal source fields to denote integer and fraction digits
within the zoned decimal value. (e.g. 8.1J) See zoned decimal integer for description of zoned decimal field contents.

A zoned decimal fixed point value has both a precision and scale (p,s). The precision identifies the maximum number of zoned
decimal digits that may be attributed to the decimal fixed point value, whereas scale identifies the number of those digits that
are reserved for the fraction. e.g. A value 123.4E has precision and scale of (5,2).

As for any decimal number representation, the fraction digits occupy the least significant positions. For zoned decimal fixed
point values, these correspond to the least significant positions of the zoned decimal source field before the sign code.

If a zoned decimal fixed point value is used in SELCOPY syntax where only an integer value is appropriate, then the fraction
digits are ignored. e.g. when assigning a value to an integer type variable.

Constants:
Specification of zoned decimal fixed point constants is discussed earlier in this chapter and includes examples of
zoned decimal fixed point values.

Fields:
Zoned decimal fixed point field definitions may only be used as source fields in SELCOPY operations and variable
assignments. If specified as an operation target field, the decimal point is ignored and the value treated as a zoned
decimal integer value.

A zoned decimal fixed point field definition must include data type specification, TYPE=Z. Alternatively, for field
definitions that are not Type 4, TYPE=C may be used. e.g.

 DECLARE B1 BIN * Binary integer variable, B1.
 DECLARE F1 FLT(8) BIN * Floating point variable, F1.
 MOD 21 = '3123.4M' * Value: -3123.44
 B1 = 7 AT 21 TYPE=Z * B1 = -3123
 F1 = 7 AT 21 TYPE=Z * F1 = -3123.44
 SUB 4 AT 1 TYPE=Z FROM F1 * Subtract a rational number.
 CVZC 21, 27 TO 31 FMT='£s,ss9.99 DR' * '£3,123.44 DR'

Hex Floating Point

SELCOPY supports rational numeric values sourced from finite, single precision (short format: 4-byte) or double precision (long
format: 8-byte) hexadecimal floating point fields. Extended format (16-byte) floating point fields are not supported.

A hex floating point field comprises a sign bit, exponent and significand (mantissa) to represent rational hexadecimal numbers
where the position of the radix point can vary.

The most significant bit determines the sign (0=Positive, 1=Negative). An unsigned binary value, defined by the next 7 bits,
includes a x'40' bias and represents the signed, base-16 exponent value (i.e. powers of the radix 16). The remaining bits of the
field represent the significand, a 6 hex digit (single precision) or 14 hex digit (double precision) value. The significand value is a
fraction since the implied radix point is always to the left of this value.

Unless the DEFAULTFP environment option has been set to BIN, hex floating point is SELCOPY's default floating point format
when running on IBM z/OS or z/VM CMS.

Constants:
Floating point values comprising a sign, significand and exponent may be specified as source data on a CVCF
operation only. This is discussed under Numeric Character Constants earlier in this chapter.

Variables:
Declared variables of this data type are declared using keyword identifier FLT or DBL with parameter HEX. Note that
HEX is default for z/OS and z/VM CMS.

 DECLARE FS FLT HEX * Single precision hex floating point.
 DECLARE FD FLT(8) HEX * Double precision hex floating point.
 DECLARE DD DBL HEX * Double precision hex floating point.

Fields:
Hex floating point field definition syntax includes data type specification, TYPE=F, with parameter HEX. Note that HEX
is default for z/OS and z/VM CMS. e.g.

 CVCF 20 AT 1 TO 8 AT 101 TYPE=F HEX * Char -> HEX Float.
 CVFC 8 AT 101 TYPE=F HEX TO 21 FORMAT='z,zz9.99999-' * HEX Float -> Char.

 IF 8 AT 101 TYPE=F HEX <= 1.9 * Arithmetic compare.
 THEN MULT 8 AT 101 TYPE=F HEX BY 16 * Multiply by 16.

Specification of a hex floating point field with a length greater than 8 bytes will give return code 8 if the field represents
the source value of a variable assignment, or ERROR 062 if a parameter to a SELCOPY operation.

However, specification of non-standard floating point field lengths (1, 2, 3, 5, 6, 7) are acceptable. For the purposes of
value assignment, evaluation, arithmetic and data type conversion, floating point fields defined with one of these
non-standard lengths are padded on the right with binary zeros to a length of 4 or 8 bytes as appropriate. If specified
as the target field of a conversion operation (CVxF), the least significant bytes of the significand value will be truncated
or padded with binary zeros to accommodate the target field length.

Chapter 3. Data Elements and References Zoned Decimal Fixed Point

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 63

Binary Floating Point

SELCOPY supports rational numeric values sourced from finite, single precision (short format: 4-byte) or double precision (long
format: 8-byte) IEEE-754 binary floating point fields. Extended format (16-byte) floating point fields are not supported.

A binary floating point field comprises a sign bit, exponent and significand (mantissa) to represent rational binary numbers
where the position of the radix point can vary.

The most significant bit determines the sign (0=Positive, 1=Negative). Bits immediately following the sign bit, define a biased,
unsigned binary value that represents a signed base-2 exponent value (i.e. powers of the radix 2). The number of bits that
define the exponent value and the bias applied depend on the binary floating point field format.

Precision #Bits Bias
Single (short) 8 127 (x'7F')
Double (long) 11 1023 (x'3FF')

The remaining bits of the field represent the significand value, a 23 binary digit (single precision) or 52 binary digit (double
precision) value. The significand value is a fraction since the implied radix point is always to the left of this value.

Normal binary floating point values have an implied integer value of 1 (i.e. the unit bit is 1). For sub-normal binary floating point
values (exponent is zero, significand is non-zero), the implied integer value is 0. Note that sub-normal binary floating point fields
are not supported by SELCOPY conversion operations (CVxx).

A binary floating point field where the exponent bits are all ones, represent INFINITY if the significand is zero or NaN (Not a
Number) if the significand is non-zero.

Unless the DEFAULTFP environment option has been set to HEX, binary floating point is SELCOPY's default floating point
format when running on operating systems other than IBM z/OS and z/VM CMS.

Constants:
Floating point values comprising a sign, significand and exponent may be specified as source data on a CVCF
operation only. This is discussed under Numeric Character Constants earlier in this chapter.

Variables:
Declared variables of this data type are declared using keyword identifier FLT or DBL with parameter BIN.

 DECLARE FSB FLT BIN * Single precision bin floating point.
 DECLARE FDB FLT(8) BIN * Double precision bin floating point.
 DECLARE DDB DBL BIN * Double precision bin floating point.

Fields:
Binary floating point field definition syntax includes data type specification, TYPE=F, with parameter BIN. Note that BIN
is default for Unix, Linux and Windows. e.g.

 CVCF 20 AT 1 TO 4 AT 201 TYPE=F BIN * Char -> BIN Float.
 CVFC 4 AT 201 TYPE=F BIN TO 21 FORMAT='z,zz9.99999-' * BIN Float -> Char.

 IF 4 AT 201 TYPE=F BIN > -0.019 * Arithmetic compare.
 THEN MULT 4 AT 201 TYPE=F BIN BY 24 * Multiply by 24.

Specification of a binary floating point field with a length greater than 8 bytes will give return code 8 if the field
represents the source value of a variable assignment, or ERROR 062 if a parameter to a SELCOPY operation.

However, specification of non-standard floating point field lengths (2, 3, 5, 6, 7) are acceptable. For the purposes of
value assignment, evaluation, arithmetic and data type conversion, floating point fields defined with one of these
non-standard lengths are padded on the right with binary zeros to a length of 4 or 8 bytes as appropriate. If specified
as the target field of a conversion operation (CVxF), the least significant bytes of the significand value will be truncated
or padded with binary zeros to accommodate the target field length.

Numeric Character Data

Character data may have a numeric interpretation when referenced as one of the following:

A source value for numeric variable assignment or arithmetic operations. (e.g. ADD, MULT)•
A formatted numeric display value for output operations. (e.g. PRINT, WRITE)•
A target field or declared variable for arithmetic or data conversion operations. (e.g. SUB, CVxC)•

Declared character variables may only have a numeric interpretation if a FORMAT string is specified on the DECLARE operation.
e.g.

 DECLARE C1 CHA(2) INI='12'
 DECLARE C2 CHA INI='12' FMT='99' * Numeric interpretation.

 MOD POS C1+1 = 'X' * Value of C1 becomes: '1X'
 MOD POS C2+1 = 'X' * Value of field at pos 13 becomes: 'X'

Character constants and field definitions may have a numeric interpretation whether or not a FORMAT string is specified.

Chapter 3. Data Elements and References Binary Floating Point

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 64

Numeric Character with FORMAT

If character data has an associated FORMAT string, then this will define the template by which the numeric value is established.

For target variables and fields, the FORMAT string also defines the template used to write numeric character data in storage. If
FORMAT is specified on an output operation source value, an implicit CVCC operation is performed first to convert the source
character value into the character display value specified by the FORMAT string template. This character display value is
written to the output object. e.g.

 POS 101 = 'Input Value: 1223.50' * Source field.
 PRINT 'Rounded Value = ' FROM 20 AT 101 FMT='zz,zz9' * Printed as: 1,224

See Format Specification Parameters for details on each FORMAT string symbol used for numeric value interpretation.

Numeric Character without FORMAT

If no FORMAT string has been provided, the numeric value represented by a character constant or field definition is interpreted
by evaluating the character data from left to right (i.e. lowest to highest storage address) as follows:

If the last character is one of "C", "D" or "F" (upper case) and the penultimate character is either a numeric (0-9) or a
decimal point (.), then the value is interpreted as being a zoned decimal integer or zoned decimal fixed point value.

1.

If the value is not zoned decimal, a leading unary plus (+) or minus (-), specified as the first non-blank character,
determines the sign of the value as positive or negative respectively. For zoned decimal values, the leading plus or
minus is ignored.

2.

Numeric characters (0-9) correspond to decimal numeric digits (0-9) respectively.3.

Not applicable to zoned decimal values, if no leading sign is specified but a non-numeric character, other than a
decimal point (.), is specified to the right of the last numeric digit, then the sign of the value is negative.

4.

The first occurrence of a decimal point character (.) determines the location of the decimal point. Numeric digits that
follow this constitute the fractional portion of the number.

5.

If used as source data on a CVCF (convert character to floating point) operation or on a floating point variable
assignment, the first occurrence of the character 'e' or 'E' denotes the start of a signed integer exponent value. If the
first character that follows is not minus (-), then a positive exponent is assumed. If no numerical digit exists in the
exponent value, an exponent of zero (0) is assumed.

6.

With exceptions as specified in previous points, all non-numeric characters are ignored.7.

 Examples of numeric character values which have no associated FORMAT string:

Character Data Numeric Value
2,675.1 +2675.1

2,675.1 CR -2675.1

1K -12

1k -1

-A1AA8.AA,,2.1A4 -18.214

A-12.4 +12.4

3,dF1.h8L -31.83

1.065e6 +1065000.0

-231.065e-2 -2.31065.0

FORMAT Strings
FORMAT strings are used to define the character display format of output values. e.g. field definitions or variables specified as the
target of a CVxC operation or specified as values for output operations.

A FORMAT string is a sequence of FORMAT symbol characters of up to a maximum length 66, which describe the contents of
each position of a numeric character data item and the contents of the character display output. It may be specified as an unquoted
literal, quoted character constant or, for CVxC or CVxH target values only, as a field definition or declared variable.

SELCOPY supports the following 3 types of FORMAT string, each supporting a distinct set of FORMAT symbol characters.

Numeric FORMAT strings.•
Printable Hex FORMAT strings.•
DATE FORMAT strings.•

The type of FORMAT string is determined by the SELCOPY operation and the specified FORMAT symbols.

Chapter 3. Data Elements and References Numeric Character with FORMAT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 65

Numeric FORMAT Symbols

Numeric FORMAT strings may be used as follows:

To represent the unpacked, decimal character display format of numeric values. A character display format is applicable
only for values that are the target (output) of an operation. This includes values that are specified on an output (PRINT,
PLOG, WRITE) operation. e.g.

 DECLARE XXXVAR1 CHA(20) * Character variable.
 DECLARE FLTVAR FLT * Floating Point.

 ADD '12.3' TO 4 AT 21 TYPE=F INTO 101 FORMAT='--,--9.999'
 CVPC 8 AT 12 TO XXXVAR1 FORMAT='z,zzz,zz9 CR'
 WRITE "Variable FLTVAR= " FLTVAR FORMAT='s,sss,ss9.999'
 PRINT TYPE=C FROM 4 AT 11 TYPE=B FORMAT='S99.99'

1.

To attribute a numeric interpretation to character declared variables and field definitions. The same FORMAT string also
defines the default character display format for the variable or field. e.g.

 DECLARE XXXVAR2 CHA FORMAT='ss,ss9' * Character numeric variable.

 XXXVAR2 = 3247 * '+3,247'
 MOD POS 31 FORMAT='ss,ss9.99' = '-27.3' * ' -27.30'
 PRINT "Variable XXXVAR2=" XXXVAR2 * Uses FORMAT on DECLARE.

2.

Numeric FORMAT strings contain characters that each represents a FORMAT substitution control symbol, a decimal point
control symbol or a constant value. FORMAT substitution control symbols are digit, zero suppression and floating sign position
control symbols.

Integer, fixed point and floating point source values may be represented by numeric integer or fixed point FORMAT strings. For
integer FORMAT strings, no decimal point control symbol is specified and all substitution control symbols represent integer digit
positions. For fixed point FORMAT strings, integer and fractional digit positions correspond to FORMAT substitution control
symbols located to the left and right of the decimal point control symbol respectively.

The length of a numeric FORMAT string may not exceed 255 characters and must include at least as many FORMAT substitution
control symbols representing integer digits as there are decimal integer digits in the numerical value. If a floating sign symbol is
specified as the first FORMAT substitution control symbol, then the minimum number of substitution control symbols is increased
by 1.

If the FORMAT string does not satisfy these criteria, then return code 8 (RETCODE=8) is flagged for the SELCOPY statement on
which the error occurred and the character display format of the number is all asterisks (*) for the length of the FORMAT string.

Digit Control Symbol

The digit control symbol, "9" is a FORMAT substitution control symbol used to represent the position of a decimal digit (0-9) in
the character display.

Digit control symbols are substituted with a numeric digit regardless of whether the digit is significant or insignificant within the
numeric value. Insignificant digits are leading zeros that occur to the left of the first non-zero digit belonging to the integer
portion of the source numerical value.

Examples of digit control symbols:

Source Value
(as decimal)

FORMAT
String

Character Display
Format

12 99 12
12 999 012
143 99999 00143
2797 99999 02797
659 99 **

Decimal Point Control Symbol

The decimal point control symbol "." (dot/period) is used to identify the start of fraction digits in the character display of a fixed or
floating point number. It is the position at which the decimal point character "." is situated in the character display.

If more than one decimal point control symbol is specified, a selection time error (ERROR 122) is returned. If no decimal point
control symbol is specified in the FORMAT string, then the character display format is an integer.

The integer and fraction digits of the numeric source value are aligned on the decimal point control symbol. Therefore, the
character display of a numeric value may be extended with insignificant zero digits before the integer value and following the
fractional value.

For fixed point or floating point numeric values, if no decimal point control symbol is specified or there are fewer FORMAT
substitution control symbols to the right of the decimal point control symbol than there are fractional digits, then rounding occurs

Chapter 3. Data Elements and References Numeric FORMAT Symbols

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 66

at the least significant digit control character.

Special Case:
Decimal point control symbol (".") is treated as being a character constant if it follows the last substitution symbol in the
FORMAT string.

Examples of decimal point control symbol use:

Source Value
(as decimal)

FORMAT
String

Character Display
Format

12 99.99 12.00
12.8 999.9 012.8
12.8 999 013
2.5 999.999 002.500
143.333 9999.99 0143.33
143.335 9999.99 0143.34
6659 99.99 *****

Zero Suppression Control Symbol

The zero suppression control symbols "z" and "Z" are FORMAT substitution control symbols used to represent the position of a
conditional decimal digit (0-9) in the character display.

Zero suppression control symbols are interpreted as follow:

If the zero suppression symbol represents a digit which is a leading (i.e. insignificant) zero, then a blank character is
substituted. Otherwise, the digit (0-9) is substituted as is.
e.g. For value 22, FMT='zzzz' returns character display bb22.

1.

A zero suppression symbol that occurs to the right of a digit control symbol ("9") is itself treated as a digit control
symbol. i.e. no zero suppression will occur for these symbols.
e.g. FMT='zz9zz.zz' is equivalent to: FMT='zz999.99'

2.

If all substitution symbols in the FORMAT string are zero suppression symbols, then a zero integer, fixed point or
floating point numeric value will have a character display of all blanks for the length of the FORMAT string.
e.g. For value 0.00, FMT='AzBzCD.zzEF' returns character display bbbbbbbbbbb, i.e. (11 blanks.)

3.

If the numeric value includes a fraction, no zero suppression will occur for zero suppression symbols specified to the
right of a decimal point control symbol (".")
e.g. For value 1.056, FMT='zz.zzzzz' returns character display b1.05600. (b = blank)

4.

If the numeric value includes a fraction but has a zero integer value, and no digit control symbol ("9") exists to the left
of the decimal point control symbol ("."), then a zero (0) will automatically be inserted immediately to the left of the
decimal point in the character display.
e.g. For value 0.056, FMT='zNNN.zzzzz' returns character display bbb0.05600.

5.

 Examples of zero suppression control symbol use:

Source Value
(as decimal)

FORMAT
String

Character Display
Format

12 ZZZZZ bbb12
37.8 ZZZ.Z b37.8
37.8 ZZZ b39
6.9 ZZZ.ZZZ bb6.900
62 9ZZZZ 00062
0 ZZ.ZZ bbbbb
0.0 ZZ.ZZ bbbbb
0.021 ZZ.ZZZ b0.021
0.021 .ZZZ .021

Chapter 3. Data Elements and References Decimal Point Control Symbol

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 67

Floating Sign Control Symbols

The floating sign control symbols "s", "S", "+" and "-" are FORMAT substitution control symbols used to represent the position of
either a conditional decimal digit (0-9) or the numeric sign in the character display.

Floating sign control symbols operate in the same way as zero suppression symbols except that a numeric sign character is
substituted in the position of the right most floating sign symbol for which zero suppression would occur.

If the floating sign symbol for which numeric sign substitution occurs is "s", "S" or "+", then the sign character substituted is "+"
(plus) for positive numeric values and "-" (minus) for negative values. If this floating sign symbol is "-", then no substitution of
numeric sign will occur for a positive value but character "-" (minus) is substituted if the value is negative.

Specification of a floating sign symbol as the left most substitution control symbol in the FORMAT string signals the intention to
prefix the character display value with a sign character. Therefore, return code 8 is set and the character display format is set to
asterisks (*) if decimal digit substitution has occurred for the left most floating sign symbol. i.e. substitution of a sign character
cannot take place. The one exception to this is if the source numeric value is positive and the left most substitution control
symbol is "-". In this case, no sign character would be substituted and so the character display is unaffected.

Special Case:
Floating sign control symbol "-" is treated as being a character constant if the character in the FORMAT string
immediately to its left is a digit control symbol ("9"). This allows specification of "-" minus as a punctuation character or
negative value suffix indicator in the character display.

Examples of floating sign control symbol use:

Source Value
(as decimal)

FORMAT
String

Character Display
Format

32.8 SS9.99 +32.80
32.8 SS9.99 +32.80
85.6 SSSZZZZ.ZZ bb+bb85.60
-0.07 +++ZZZZ9.99 bb-bbbb0.07
319.45 ----9.99 bb319.45
222.67 --9.99 222.67
222.67 ++9.99 ******
213 ZZZSS9 bbb213
213 SSSSS9-9 bbb+21-3

Constants

Any character, within the format string, that is not one of the FORMAT substitution control symbols or the decimal point
control symbol is treated as a character constant. A character constant represents the position of a conditional character of the
same code point in the character display.

Character constants provide a method of embedding punctuation in the character display.

The interpretation of a character constant is determined by its location in relation to FORMAT substitution control symbols and
the decimal point control symbol.

If positioned to the left of the first occurrence of one of these control symbols, the character constant is substituted with
a blank.
e.g. For value 32.34, FMT='ABCZZ9.99' returns character display bbbb32.34.

The only exception to this occurs for source numeric values where the integer part has a value of zero (0). In this case,
a character constant within a FORMAT string which is located immediately to the left of the decimal point symbol (".")
with no preceding digit control symbols ("9") is substituted with character zero (0).
e.g. For value 0.56, FMT='ABC.99' returns character display bb0.56.

•

If positioned to the right of FORMAT substitution control symbols, all of which have undergone zero suppression, the
character constant is treated as being a zero suppression control symbol or a floating sign control symbol, if floating
sign substitution is active.
e.g. For value 923, FMT='ss,ss9' returns character display bb+923.

•

If positioned between the first and last occurrences of a FORMAT substitution control symbol for which no zero
suppression has occurred, the character constant is passed without translation into the same position of the character
display.
e.g. For value 432.34, FMT='zABCz9.99' returns character display 4ABC32.34.

•

If positioned following the last occurrence of a FORMAT substitution control symbol, the character constant is
substituted with a blank if the source numeric value is positive and no substitution of numeric sign character "+" is to
take place.
e.g. For value 25, FMT='zz9DB' returns character display b25bb.

Otherwise, the character constant is passed without translation into the same position of the character display.
e.g. For value -25, FMT='zz9DB' returns character display b25DB.

•

Chapter 3. Data Elements and References Floating Sign Control Symbols

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 68

Beware when using character constant "X" or "x" in a numeric FORMAT string. "X" and "x" are format control symbols for
printable hex format strings. If the total number of "X" and "x" character constants is greater than the number of FORMAT
substitution symbols, then a printable hex format string is assumed.

Examples of character constant use:

Source Value
(as decimal)

FORMAT
String

Character Display
Format

54321 ZZ,ZZ9.99bCR 54,321.00bbb
-67381 ZZ,ZZ9.99bCR 67,381.00bCR
-76942.779 S,SSS,SS9.99bVAT bb-76,942.78bVAT
-7.2 S,SSS,ZZ9.99bDEB bbbbb-bb7.20bDEB
12 99. 12b
-12 99. 12.

Printable Hex FORMAT Symbols

Printable hex FORMAT strings may be used to format the character display of a source field as hexadecimal. i.e. 1 byte of the
source field is represented by 2 hex digits in the character display.

The source field may be a character constant, a field definition or the source field containing the data typed value of a declared
variable.

A printable hex character display format is applicable only for values that are the target of a CVCH operation or an element of an
output (PRINT, PLOG, WRITE) operation. e.g.

 DECLARE BINVAR BIN INI=6589 * Binary integer (source field length=4)

 PRINT "BINVAR Source = X'" BINVAR FORMAT='xxxx,xxxx' "'"
 * Prints: BINVAR Source = X'0000,19BD'

 CVCH 'ABCD' ASCII TO 1 FORMAT=" 'xx,xx xx,xx' = ASCII code. "
 CVCH 'ABCD' EBCDIC TO 1 FORMAT=" 'xx,xx xx,xx' = EBCDIC code. "

Printable hex FORMAT strings contain characters that represent either a hex digit control symbol or a constant value and may
be applied to a source field of any data type.

The characters that comprise a printable hex FORMAT string are repeated as many times as is necessary to format all bytes of the
source field. If FORMAT string repetition occurs, then the character display output terminates once all the source field bytes have
been formatted. i.e. Any unprocessed, trailing characters belonging to a repeated FORMAT string are ignored. e.g.

 PRINT 'AB' EBCDIC FORMAT='xx-->' * Prints: 'C1-->C2'

While character constants and declared variable source fields each have an implicit length, a source field specified as a field
definition must include an explicit length (or end position) value. This is because the length of a source field definition cannot be
determined by the target field FORMAT string.

Hex Digit Control Symbol

The hex digit control symbol, "x" or "X" is used to represent the position of a hex digit (0-F) in the character display. Each hex digit
is one of a pair representing a byte in the source field.

If "n" is the number of bytes in the source field and "m" is the number of hex digit symbols, then the FORMAT string will repeat if
"m<2n". If "m>2n", then the additional trailing hex digit control symbols are upper cased and treated as character constants (i.e.
character "X").

Examples of hex digit control symbols:

Source Field
(as hex constant)

FORMAT
String

Character Display
Format

x'015A' X 015A
x'002C' XXX 002C
x'3132' xxxxx 3132X

Constants

Any character, within the format string, that is not a hex digit control symbol is treated as a character constant. A character constant
represents the position of a character of the same code point in the character display.

Chapter 3. Data Elements and References Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 69

A character constant is passed without translation into the same position of the character display. This provides a method of
embedding punctuation in the character display.

Examples of character constant use:

Source Field
(as hex constant)

FORMAT
String

Character Display
Format

x'F1F2' XX, F1,F2
x'FF5A' XXXX HEX FF5A HEX
x'31323334' XXXX, 3132,3334
x'41534349' XXXXbASCIIb 4153bASCIIb4349
x'0001F301' XX:XX** 00:01**F3:01
x'0001234C' X.XX 0.001.234.C

DATE FORMAT Symbols

DATE FORMAT strings may be used to format the character display of a source date field. The source field may be a character
constant or a field definition.

A DATE character display format is applicable only for character values that are the target of a CVDATE operation.

 CVDATE NOW TO 1 FORMAT="Day d(Ddd), ddth Mmm yyyy"
 CVDATE 4 AT 21 TYPE=U STYLE=J TO 81 FORMAT="yyyy/mm/dd"

DATE FORMAT strings contain characters that represent FORMAT substitution control sequences or constant values. This
type of FORMAT string may apply to a source date field of any of the supported data types and styles.

Date Control Sequences

Date control sequences are used to represent the position of a date elements in the character display. Date element values are
interpreted from the contents of the source date field.

Note that all date sequences are case-sensitive and are processed from left to right. The following table details all supported date
substitution control sequences with examples of character display output based on a date of Friday 21st August 2015.

Date Control
Sequence

Examples Description

Mmmmmmmmm Augustbbb Month of year - 'Month', where "Month" is the month name in mixed case, padded on the
right with blanks up to a fixed length of 9 characters.

Mmmzzzzzz August Month of year - 'Month', where "Month" is the month name in mixed case.

The month name occupies an area of variable length up to a maximum of 9 characters.
Trailing blanks are truncated so that the remainder of the character display output is shifted
to the left as appropriate.

Ddddddddd Fridaybbb Day of week - 'Weekday', where "Weekday" is the day name in mixed case, padded on
the right with blanks up to a fixed length of 9 characters.

Dddzzzzzz Friday Day of week - 'Weekday', where "Weekday" is the day name in mixed case.

The day name occupies an area of variable length up to a maximum of 9 characters.
Trailing blanks are truncated so that the remainder of the character display output is shifted
to the left as appropriate.

yyyy 2015 4-digit year number.
ddth 04th Day of month number in abbreviated sequence notation. i.e. nnst, nnnd, nnrd or nnth

where nn is the day of month number.

This substitution sequence occupies a fixed length area of 4 characters in the character
display. For day numbers 1 through 9, the value is right adjusted with a leading blank.

zdth 1st Day of month number in abbreviated sequence notation.

Same as ddth except that the output length is variable. Day numbers 1 through 9 will
occupy 3 characters with the remainder of the character display output shifted to the left as
appropriate.

Chapter 3. Data Elements and References Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 70

Mmm Aug Month of year - 'Month', where "Month" is the month name in mixed case, truncated to a
fixed length of 3 characters.

MMM AUG Month of year - 'Month', where "Month" is the month name in upper case, truncated to a
fixed length of 3 characters.

Ddd Fri Day of week - 'Weekday', where "Weekday" is the day name in mixed case, truncated to a
fixed length of 3 characters.

DDD FRI Day of week - 'Weekday', where "Weekday" is the day name in upper case, truncated to a
fixed length of 3 characters.

ddd 233 3-digit day of year number (001-366).

ww 33 2-digit week of year number (00-52).

Sunday is day 1 of the week. If 1st January falls on a Thursday, Friday or Saturday (day of
week numbers 5, 6 or 7), the first week of the year is week 0, otherwise it is week 1.

cc 20 2-digit century number.
yy 15 2-digit year of century number.
mm 08 2-digit month of year number (01-12).
dd 21 2-digit day of month number (01-31).
D 6 1-digit day of week number (1-7) where 1=Sunday, 2=Monday, ... 7=Saturday.

Note that a "D" FORMAT control symbol is treated as a character constant if it occurs
adjacent to an alpha character.

d 5 ISO 8601 standard 1-digit day of week number (1-7) where 1=Monday, 2=Tuesday, ...
7=Sunday.

Note that a "d" FORMAT control symbol is treated as a character constant if it occurs
adjacent to an alpha character.

Constants

Any character, within the format string, that is not part of a date control sequence is treated as a character constant. A character
constant represents the position of a character of the same code point in the character display.

A character constant is passed without translation into the same position of the character display. This provides a method of
embedding punctuation in the character display.

Examples of character constant use:

Source Field
(as date constant)

FORMAT
String

Character Display
Format

2010/01/18 US Date: mm/dd/yyyy US Date: 01/18/2010
1998/11/24 Julian Date: yyyy/ddd Julian Date: 1998/328
1918/11/11 Day d (Ddd) ddth Mmm ccyy Day 1 (Mon) 11th Nov 1918
2003/02/02 Dddzzzzzz the zdth of Mmmzzzzzz, ccyy Sunday the 2nd of February, 2003

Chapter 3. Data Elements and References Date Control Sequences

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 71

Expressions
An expression is a representation of a value or, in the case of regular expressions, a pattern of character data.

SELCOPY supports two types of expressions: Arithmetic Expressions and Regular Expressions

Arithmetic Expressions

An arithmetic expression represents a numeric value and can be one of the following:

A single term specified by a constant or variable.•
A number of constant or variable terms and infix arithmetic operators.•

Syntax:

 +------------------------------+
 v |
 |----------- term -------+------------------------------+--------------------|
 | |
 +-- operator ------ term ------+

Parameters:

term
A constant or variable (declared, internal or @variable) of numeric or numeric character data type. Similarly, a substitution
variable that gets substituted with a constant value or variable name of numeric or character numeric data type may also
be used.

Each term of the expression is an operand in an ADD or SUBTRACT function as defined by the infix operator. e.g.
@x+1-5

operator
One of the supported arithmetic operators, "+" (plus) or "-" (minus).

SELCOPY's arithmetic expressions are evaluated from left to right so that the result from an add/subtract function provides the first
operand of the next add/subtract function. e.g. A-B+C => Add(Subtract(A,B),C)

Expression operands may be of different data types. However, the ADD and SUBTRACT functions can only operate on operands
of the same data type and precision. If necessary, SELCOPY will convert expression operands to intermediate result values of the
same data type and precision.

If any of the operands are of fixed or floating point data types, then all operands are represented internally by binary floating point
values. If all operands are of integer data types then all operands are represented internally as integer values. The precisions of
these internal floating point or integer values will be that of the expression operand having the greatest precision.

The result value is then converted, if necessary, to the data type of the target value. If necessary the result value will be rounded to
the nearest fractional digit, as defined by the scale of the target. For integer targets, such as field positions and lengths, the result
value is rounded to the nearest integer number.

Because variable values may change throughout the course of a SELCOPY program execution, any expression that involves
variable terms is evaluated for each execution of an assignment or operation in which it has been specified.

The following contains examples of arithmetic expression use:

 DECLARE XVAR BIN INI=23 * Binary integer.
 DECLARE FMAX FLT BIN INI=24.387 * Binary floating point.
 DECLARE FCUR FLT BIN * Binary floating point.
 DECLARE TEXT CHA(25) * Character.

 EQU IREC 1

 READ INDATA INTO IREC * Input file

 PRINT 'Initial maximum allowed value: ' FMAX STOPAFT=1

 IF POS IREC, IREC+LRECL-1 = 'Value="' PTR=@VAL * Range test.
 AND POS @VAL+6, @VAL+XVAR-1 = '"' PTR=@END REVERSE * Trailing quote.

 THEN @LEN = @END-1-@VAL-7+1 * Length of quoted text.
 THEN TEXT = POS @VAL+7 LENGTH=@LEN * Assign unquoted text to TEXT.
 THEN PRINT 'Current value is: ' TEXT * Print current value.
 ELSE GOTO GET * Get next input record.

 CVCF TEXT TO FCUR * Current value as floating point.

 IF FCUR > FMAX+5.5 * Compare with max value + 5.5.
 THEN FMAX = FCUR * Assign new maximum value.
 THEN SPACE
 THEN PRINT 'New maximum allowed value: ' FMAX

Chapter 3. Data Elements and References Constants

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 72

Usage Note:

Provided no variable terms are used, an arithmetic expression may be specified as the value of an operation parameter resolved
during control statement analysis (e.g. STEP, TIMES, STOPAFT). Therefore, the following may be used to limit the total number of
times an operation is executed to 10, but allow for an additional number of executions passed as a parameter to the program.

 OPTION ENVFAIL='0' * Default of %1 is 0.
 PRINT FROM '---###---' STOPAFT 10+%1 * Variable execution limit.

Regular Expressions

See also Appendix A. Regular Expression Summary for a quick reference of regular expression operators, text specifiers and
predefined expressions.

A regular expression represents a complex pattern matching string for searching character data. First developed in the Unix
environment, regular expressions may be used to search for string patterns in text. i.e.

As a search string value on a character compare (IF, AND, OR) operation.•
As a search string value on a CHANGE operation.•

If a regular expression is specified as the search string of a CHANGE operation, the replacement value may contain tag references
to tagged sub-expressions of the regular expression search string pattern.

 (1)
 |----+-- RGX -------+--------+-- quoted_constant ----+-----------------------|
 | | | |
 +-- REGEXP ----+ +-- var_char -----------+
 | | | |
 +-- REGX ------+ +-- field_pLENn --------+
 +-- field_p1p2 ---------+
 +-- field_nATp ---------+

Note:

The RGX/REGEXP/REGX parameter keyword may occur anywhere following the operation keyword, provided it does not
separate any other parameter from its argument.

1.

A regular expression pattern string may be specified as a quoted character constant, a type 1/2/3 field definition or a declared
variable of character data type.

Note that, if specified as a variable or field definition, the expression must be evaluated for each execution of an operation on which
it has been specified resulting in a significant overhead. Therefore, it is recommended that, whenever possible, regular expressions
are specified as quoted character constants.

Regular Expressions Pattern String

Syntax:

>>------+-----------+--------| regular_expression |------------------------><
 | |
 +---- ^ ----+

regular_expression:

 +---+
 v |
|---+--+-----------+--------| expression_term |-----------------+---------|
 | |
 +---- ~ ----+

expression_term:

|----------+--| character |----------------------+--+------+---+----------|
 | | | | |
 +--| character_class |----------------+ +- * --+ |
 | | | | |
 +--- ? -------------------------------+ +- + --+ |
 | | | | |
 +--- predefined_expression -----------+ +- @ --+ |
 | | | | | |
 | +-------- | -----------+ | +- # --+ |
 | v | | | | |
 +--- (-+- regular_expression -+-) --+ +- ^n -+ |
 | | |
 +--- { regular_expression } ----------+ |
 | | |
 +--- &n ------------------------------+ |
 | |
 +--- $ ---+

Chapter 3. Data Elements and References Arithmetic Expressions

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 73

character_class:

 +---+
 v |
|--- [---+-----+--+-| character |---+-------------------------+---] ----|
 | | | |
 +- ~ -+ +-- - --| character |---+

character:

|------------------+- literal_character ----------+-----------------------|
 | |
 +- escaped_character ----------+
 | |
 +- symbolic_escaped_character -+
 | |
 +- hex_character --------------+
 | |
 +- octal_character ------------+

Note:

A blank character is a literal_character and should only be included in a regular expression pattern string if it is part of
the pattern.

1.

Parameters:

^
The "^" (caret/circumflex) character at the start of the pattern string indicates that a match for the pattern search
string is successful only if it is found in the first position of the text being searched. e.g.

 DECLARE IREC NTS(80) * Null terminated character string.
 IF IREC = RGX '^[BKX]' * True if 1st character is "B","K" or "X".

regular_expression
The expression or sub-expression comprising one or more character pattern matching expression terms. The terms of
a regular_expression area evaluated from left to right.

~
The "~" (tilde) character represents the logical NOT operator and applies only to the expression_term that
follows it.

If the character (or sequence of characters) in the source text does not match the pattern specified by
expression_term, the test for that part of the regular expression pattern matching algorithm is TRUE. This
type of test establishes only that the source text does not match the expression term and so does not
influence the length of matched text. e.g.

 CHANGE IREC RGX 'S~[CH]' '#' * Change all occurrences of character "S"
 * that is not followed by a "C" or "H".

An expression_term that immediately follows an expression_term for which a logical NOT operation has been
applied, will test source text starting at the same character offset. i.e. the offset within the source character
text is not advanced following an expression_term test preceded by "~".

See also "~" (tilde) logical NOT operator in a character_class specification which has a different definition.

expression_term
A term within the regular expression constituting an individual pattern matching test.

Each expression_term tests a single character or sequence of characters in the source text. Furthermore, unless
prefixed by logical NOT (~), each expression_term tests the source text that immediately follows the text matched by
the previous expression_term.

character
A single character to be matched in the source text. The character can be expressed in the following ways:

literal_character
A character which represents a code point within the ASCII or EBCDIC code page used to specify
the regular expression. If supplied as a quoted constant, then, by default, a regular expression will
use the code page in which the control statements were entered.

A literal_character can be any character other than the regular expression special characters.

escaped_character
An escaped character is the escape operator "\" (backslash) followed by one of the regular
expression special characters. This is used to define one of these syntactically significant characters
as a character value. e.g.

 DECLARE DATA CHARZ INI = "ABC[[DEF]]G"
 CHANGE DATA '[\[\]]' NULL * GIVES: "ABCDEFG"

Chapter 3. Data Elements and References Regular Expressions Pattern String

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 74

symbolic_escaped_character
Symbolic escaped characters are used to represent print formatting characters. A
symbolic_escaped_character is the escape operator \ (backslash) followed by one of the following
lower case letters:

Symbol Character Description ASCII
code

EBCDIC
code

\b BS Backspace X'08' X'16'
\f FF FormFeed X'0C' X'0C'
\r CR Carriage Return X'0D' X'0D'
\n LF LineFeed X'0A' X'25'
\t HT Horizontal Tab X'09' X'05'

hex_character
A hex character is the escape operator "\" (backslash) followed by "x" or "X" and two hexadecimal
digits for example \x00. This provides a way of specifying a character which cannot be input from the
keyboard.

octal_character
An octal character is the escape operator "\" (backslash) followed by one, two or three octal digits for
example \072 or \72 (equivalent to \x3A).

character_class
A character class is a set of one or more characters in the range \x00-\xff which represents a single character
to be matched in the source text. A match occurs when the source text character matches one of those in the
class.

The class definition is a list of characters enclosed within delimiters "[]" (square brackets). A character list
may be specified as a number of single characters and/or character ranges.

Character ranges are defined as a range start character followed by a "-" (hyphen) followed by a range end
character. A range comprises all hexadecimal values that fall between the character code points of the range
limits.

An exception occurs when SELCOPY executes in EBCDIC based systems where non-alpha code points exist
within the range of EBCDIC alpha character code points. If the range limits are alpha characters of the same
(upper or lower) case, these non-alpha code points are disregarded. e.g. H-K represents the character range
HIJK comprising code points \xC8, \xC9, \xD1 and \xD2 only.

Character ranges can be specified in ascending or descending order. e.g. 0-9 and 9-0 both define the set
0123456789 of numeric digits.

Any character, denoting a single character or the limit of a range of characters, may be specified in one of the
formats described for character.

~
The "~" (tilde) character must be specified immediately following the opening square bracket "[", and
as for regular_expression, represents the logical NOT operator.

When used in a character_class, it is equivalent to specifying all characters in the range \x00-\xff
excluding those identified in the character class. Therefore, unlike regular_expression, a match in
the source text for a character_class containing "~" increases the length of the matched text by one.

An expression_term that immediately follows the character_class will test source text starting at the
next character offset. i.e. the offset within the source character text is advanced by one following a
test for a character_class whether or not it contains "~".

 CHANGE IREC RGX 'S[~CH]' '#' * Change all occurrences of "Sx" to "#"
 * where "x" is not "C" or "H".

See also "~" (tilde) logical NOT operator in regular_expression which has a different definition.

?
The "?" (question mark) character is the wild card character representing any character code point. It is
equivalent to the character class [\x00-\xff].

predefined_expression
Several commonly used regular expressions have been supported as predefined expressions and can be
referenced using the predefined expression operator : (colon) followed by a single lower case letter.

Supported predefined expressions are:

Chapter 3. Data Elements and References Regular Expressions Pattern String

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 75

Name Expression Description
:a [a-zA-Z0-9] Alphanumeric character
:b ([\t]#) White space (a string of blanks and tabs).
:c [a-zA-Z] Alphabetic character
:d [0-9] Numeric digit
:h (((0x)|)[0-9a-fA-F]#) Hexadecimal numbers
:i ([a-zA-Z_\\$][a-zA-Z0-9_\\$]@) C-language identifiers
:n (([0-9]@.[0-9]#)|([0-9]#)) Numbers with or without a decimal point
:q (("[~"]@")|('[~']@')) Quoted string (in single or double quotes).
:w ([a-zA-Z]#) Word (a string of alphabetic characters).
:z ([0-9]#) Integer (a string of numeric digits).

(regular_expression < | regular_expression ... >)
An expression_terms may itself be a regular_expression in which case the regular_expression is a
sub-expression which must be enclosed within "()" (parentheses).

Since a sub-expression may comprise any number of expression_terms supported by regular_expression, it
may be used to group together a number of terms to which the logical NOT operator "~" or any of the pattern
repetition operators ("*", "+", "@", "#" or "^") may be applied. e.g.

 DECLARE WK2 CHA INI "ABABABABABABABABAB, ABABAB"
 CHANGE RGX WK2 "(AB)^2" "xxxx" TIMES 1 * Gives: "xxxxABABABABABABAB, ABABAB"
 CHANGE RGX WK2 "(AB)#" "yyyy" * Gives: "xxxxyyyy, yyyy "

Within the parentheses, the "|" (logical OR) character may be specified between a number of
regular_expression sub-expressions to indicate alternation. When alternation is encountered, each of the
sub-expressions is tested in turn against the same location within the source text until one matches or all fail.
e.g.

 DECLARE WK2 CHA INI "A fox, an owl and the cow."
 CHANGE RGX WK2 "(:bthe:b|:ban:b)" " " * Gives: "A fox, owl and cow. "

{ regular_expression }
A regular_expression enclosed within "{ }" (braces) is a tagged sub-expression.

Tagged sub-expressions provide a method whereby a portion of source text that matches the sub-expression
may be referenced later in the same regular expression as another expression_term. Also, the portion of
matching source text may be referenced in the replacement value of a CHANGE operation.

Up to 9 tagged sub-expressions may be specified. As regular expression pattern matching proceeds from left
to right, each tagged sub-expression generates a tag reference sequence number starting at 1. Furthermore,
the portion of source text that matches the sub-expression is saved and assigned to the reference number.
Any occurrence of the tag reference thereafter is a reference to its assigned value. See &n for tag reference
specification.

By default, SELCOPY defines an implicit, tagged sub-expression for the entire regular expression
specification for tag reference &0.

A tagged expression may encompass one or more groups of parenthesised expression_terms. e.g.
{(XYZ)^2} {(XYZ)(AB)}

Tagged sub-expressions may be nested so that one tagged sub-expression exists within another. If this is the
case, the tag reference numbering sequence corresponds to the order in which tagged sub-expression "{"
(opening brace) characters are encountered. e.g. {X{YZ}} {AB{X^2}CD} {AB{(XYZ)#}}

A tagged sub-expression may encompass a number of alternate sub-expressions. The value assigned to the
tag reference number will be the source text matched by one of the sub-expressions. e.g. {(X^2|Y|Z)}

A tagged sub-expression may be a single sub-expression of an alternation. If so, the tag reference will be
assigned a value only if the tagged sub-expression is the alternate sub-expression that matches the source
text. Otherwise, the tag reference will be assigned to NULL. e.g. ({X}|Y|Z) ({X}|{Y}|{Z})

Note, however, that a tagged sub-expression must be a complete expression_term. e.g. The following are
illegal: {X}^2 {(X}X)^2 {(X|Y|Z})

&n
The tagged expression reference operator & (ampersand) is used to refer to the source text matched by a
previously defined tagged sub-expression. The integer n identifies the tagged sub-expression number (1-9) to
which the tag reference applies.

The integer n must be in the range 0-9. &0 is the SELCOPY defined tag reference assigned a value
comprising all of the matched characters in the source text. &1 to &9 are assigned portions of the source text
that match their corresponding tagged sub-expression definitions.

A tag reference may be included in the replacement value of a CHANGE operation to include portions (or all)
of the matched source text in the value that substitutes the matching search value text. e.g.

Chapter 3. Data Elements and References Regular Expressions Pattern String

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 76

 DECLARE WK2 NTS (26) INI "AB1BC"
 CHANGE WK2 RGX '{[A-Z]}[0-9]&1' '--&0--&1-' * Gives: "A--B1B--B-C"

In the above example, the CHANGE command operates on WK2 and the regular expression identifies 3
characters. The first character must be uppercase alpha and is tagged, the second must be numeric and the
third character must be the same as the first.

$
The "$" (dollar) character may not be followed by a pattern repetition operator and indicates that the
expression_terms that follow must match all remaining characters in the source text. e.g.

 IF IREC = RGX '$[BX]' * True if the last character of IREC is "B" or "X".

Pattern Repetition Operators
The following operators are used to repeat the pattern matching term (character or sub-expression) that precedes it in
the expression_term definition.

*
The "*" (asterisk) character is the minimal closure repetition operator. It applies to the pattern matching term
preceding it and specifies that zero or more occurrences of the pattern be included in the matched source
text.

Only the minimum number of matched occurrences will be included in the final length of source text matched
by the regular expression. If the last expression_term of the regular expression includes the minimal closure
repetition operator, then the matched source text length for the expression_term will always be 0 (zero). e.g.

 DECLARE WK3 NTS (26) INI "X-ABBBBA-ABBBC-CD-E"
 CHANGE WK3 RGX 'AB*' 'x' TIMES=1 * Gives: "X-xBBBBA-ABBBC-CD-E"
 CHANGE WK3 RGX 'AB*C' 'y' TIMES=1 * Gives: "X-xBBBBA-y-CD-E"
 CHANGE WK3 RGX 'CB*D' 'z' TIMES=1 * Gives: "X-xBBBBA-y-z-E"

@
The "@" (commercial at) character is the maximal closure repetition operator. It applies to the pattern
matching term preceding it and specifies that zero or more occurrences of the pattern be included in the
matched source text.

The maximum number of matched occurrences will be included in the final length of source text matched by
the regular expression. e.g.

 DECLARE WK3 NTS (26) INI "X-ABBBBA-ABBBC-CD-E"
 CHANGE WK3 RGX 'AB@' 'x' TIMES=1 * Gives: "X-xA-ABBBC-CD-E"
 CHANGE WK3 RGX 'AB@C' 'y' TIMES=1 * Gives: "X-xA-y-CD-E"
 CHANGE WK3 RGX 'CB@D' 'z' TIMES=1 * Gives: "X-xA-y-z-E"

+
The "+" (plus) character is the minimal plus repetition operator. It applies to the pattern matching term
preceding it and specifies that one or more occurrences of the pattern be included in the matched source
text.

Only the minimum number of matched occurrences will be included in the final length of source text matched
by the regular expression. e.g.

 DECLARE WK3 NTS (26) INI "X-ABBBBA-ABBBC-CD-E"
 CHANGE WK3 RGX 'AB+' 'x' TIMES=1 * Gives: "X-xBBBA-ABBBC-CD-E"
 CHANGE WK3 RGX 'AB+C' 'y' TIMES=1 * Gives: "X-xBBBA-y-CD-E"
 CHANGE WK3 RGX 'CB+D' 'z' TIMES=1 * Gives: "X-xBBBA-y-CD-E" (no match).

#
The "#" (hash) character is the maximal plus repetition operator. It applies to the pattern matching term
preceding it and specifies that one or more occurrences of the pattern be included in the matched source
text.

The maximum number of matched occurrences will be included in the final length of source text matched by
the regular expression. e.g.

 DECLARE WK3 NTS (26) INI "X-ABBBBA-ABBBC-CD-E"
 CHANGE WK3 RGX 'AB#' 'x' TIMES=1 * Gives: "X-xA-ABBBC-CD-E"
 CHANGE WK3 RGX 'AB#C' 'y' TIMES=1 * Gives: "X-xA-y-CD-E"
 CHANGE WK3 RGX 'CB#D' 'z' TIMES=1 * Gives: "X-xA-y-CD-E" (no match).

^n
A "^" (caret/circumflex) character that does not occur at the start of the pattern string is the power repetition
operator. It must immediately be followed by a decimal integer value repetition factor, n, in the range 1-999.
Note that the repetition factor may include leading zeroes and is terminated either by a non-numeric character
or the end of the regular expression.

It applies to the pattern matching term preceding it and specifies that exactly n occurrences of the pattern be
included in the matched source text. e.g.

 DECLARE IREC NTS(80) * Null terminated character string.
 IF IREC = RGX '[BKX]^3' * "B","K" or "X" in 3 consecutive positions.

Chapter 3. Data Elements and References Regular Expressions Pattern String

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 77

Value Assignment
Values are assigned to variables and field definitions that are nominated as the target of any input, arithmetic, data modification or
conversion operation.

In particular, the MOD operation is used to initialise or update the value assigned to a target declared variable or field definition,
using a source value specified as one of the following:

A constant.•
A variable.•
A field definition.•
An arithmetic expression.•

Where the source is specified as a variable or field definition, the value currently assigned to these objects will be assigned to the
target object. e.g.

 DECLARE MAX_COUNT BIN
 MOD MAX_COUNT = 256 * Decimal integer constant value.
 MOD 4 AT 1 TYPE=B = MAX_COUNT * Value assigned to MAX_COUNT.

If the source object is a single, unquoted identifier that is not recognised as the name of a variable, then it is treated as being an
unquoted literal or numeric constant, as appropriate to the data type of the target. e.g.

 DECLARE DEPT CHA(3)
 MOD DEPT = E12 * Unquoted literal constant value.

Unless the target of the MOD operation is a type 3 field definition, the MOD operator keyword may be omitted.

 EQU IREC 1

 DECLARE NAME CHA(32)
 DECLARE OFFSET DEC(8)

 NAME = 'James Dean' * Quoted character constant.
 OFFSET = 0x40 * Hex integer constant.
 POS 23 = 'Marlon Brando' * Character constant. (Length=13)
 POS 51, 58 TYPE=P = OFFSET-16 * Type 2 field definition.
 OFFSET = 8 AT 1 TYPE=F * Floating point source field.

 4 AT 101 TYPE=B = 233 * Type 3 field definition - Invalid.

Note: The initial value assigned to a declared variable may also be set using the INI parameter keyword of the DECLARE
operation.

When assigning a value to an internal variable or @variable, specification of the MOD operator keyword is invalid and so must be
omitted.

 LRECL = 256 * Internal variable LRECL.
 RETCODE = 33 * Internal variable RETCODE.
 @VALUE = 15 * @variable.
 @HIT = IREC+LRECL * Expression with internal variable.

If the target is a declared variable of numeric or numeric character data type, then rounding of the assigned value will occur if
necessary. e.g. If assigning a rational numeric value to a variable of integer data type.

 DECLARE FLVAL FLT(8) BIN INI='245.937646'
 DECLARE DECVAL DEC(6,3)
 DECLARE BINVAL BIN(4)

 DECVAL = FLTVAL * Value: 245.938
 BINVAL = DECVAL * Value: 246

Chapter 3. Data Elements and References Value Assignment

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 78

Input/Output Data Objects
Primarily, SELCOPY is used to process data read from one or more data source objects and then write data to other data objects.
Detailed syntax for input and output may be found in dcoumentation for the READ and WRITE operations. However, for file (data
set) I/O the important parameter elements are as follow:

 +-- WRITE --+ +-- FILE --+
 | | | |
 >>---+-----------+---+----------+-- fname -----+---------------------+------->
 | | | |
 +-- READ ---+ +-- DSN -- fileid ----+

The types of data objects supported by SELCOPY for input/output and their specification within controls statements are
documented below.

Files

Both input and output are supported for data stored as files on mounted direct access storage devices (e.g. hard disk, USB, CD,
DVD) and belonging to any file system supported by the environment architecture. Furthermore, for systems that support device
independence (e.g. z/OS, Linux, Unix), I/O is supported for files on mounted tape devices.

File Id

A file Id is a name that identifies a file and its location within a file system. If specified on a SELCOPY control statement, a file id
is a programmer defined name identifier.

For the z/OS MVS file system, files are cataloged data sets and are each identified by an up to 44 character data set name
(DSN) comprising a number of up to 8 character qualifiers separated by dots, e.g. CBL.SELCOPY.TEST03.KSDS. If the data
set is partitioned (i.e. a PDS or PDSE library), then the file may include a trailing, up to 8 character member name reference in
parentheses. e.g. CBL.SELCOPY.SYSIN(SSTEST05)

For the VM/CMS file system, files on a CMS mini-disk are identified by a file name, file type and file mode ('fn ft fm') delimited
by one or more intervening blanks. e.g. CBLINS EXEC A1

For Unix-like file systems, including the CMS byte file system (BFS) and z/OS hierarchical file systems (HFS/ZFS), files are
identified by a case sensitive, hierarchical file path which includes an implicit or explicit directory path. e.g.
/home/nbj/sample_text_v32

For Microsoft Windows file systems, files are identified by a case insensitive, hierarchical file path which includes an implicit
or explicit drive letter and directory (folder) path. e.g. c:\tmp\htmlpdf\zzslprog.html

Throughout this document, the term file applies to CMS, Windows, Unix and Linux files and MVS data sets. Similarly, the term
fileid applies to the name by which a file on these file systems are identified.

Fileid Clause

File ids referencing a local or networked file, may be specified as arguments to SELCOPY input parameters and on a number of
SELCOPY options and operations.

A fileid may be specified as an unquoted literal, quoted character constant or, depending on the operation classification, a field
definition or declared variable of character data type.

In contrast to SELCOPY's usual processing, a fileid specified as an unquoted literal will not be upper cased and may contain
asterisk (*) characters without it denoting the start of comment text. However, unquoted fileids may not contain blanks or
parentheses and may be interpreted differently to quoted fileids, as described for MVS file system data sets below.

A fileid specified as a field definition must be of field Type 1, Type 2 or Type 3. Use of a field definition or variable to identify a
fileid has the advantage of being dynamic. Therefore, the fileid assigned to a file name can change throughout the course of the
program execution. Because the fileid value is unknown at control statement analysis, the file open is deferred until selection
time processing. Furthermore, any change in the fileid value will take effect only when a specific open is executed for the file
name.

For READ DIR and DIRDATA input, fileid may contain wildcard characters to represent a fileid mask. Only fileids that match this
mask will be processed. Fileid masks may have the following characteristics:

CMS mini-disk fileids support asterisks (*), representing zero or more characters, in the fn and ft qualifiers and as the
fm qualifier. They also support percent (%), representing exactly 1 character in the fn and ft qualifiers.

•

z/OS MVS file system fileids support asterisks (*), which represent zero or more characters in a library member name.•

Chapter 3. Data Elements and References Input/Output Data Objects

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 79

Unix-like file system and Windows file system fileids support asterisks (*), representing zero or more characters, in the
file name but not in the directory names. Question mark (?) is also supported, representing exactly 1 character in the
file name.

•

Windows file system fileids support specification of multiple disk letters.•

Syntax of fileid on each operating system supported by SELCOPY follows.

VM/CMS fileid:

 (1) (4) +--- . ---- * ----+
 +- FILE -- . ---+ +--- . ---- A1 ---+
 | | | |
 |----+---------+---------------+-- ft ----+-----------------+-----------+----|
 | | | | | |
 | +- fn --+-----+-+ +-+-----+-- fm ---+ |
 | (2) | | | | |
 | +- . -+ +- . -+ |
 | (3) (3) |
 | |
 +-------------------| Unix-like fileid |---------------------------+
 (5)

VM/CMS fileid Syntax Notes:

(1) CMS: An fn of "FILE" is default only if:

fileid comprises an ft only. (i.e. no fm is specified.)1.
fileid is an unquoted literal or a quoted character constant.2.
If specified as a quoted character constant, fileid contains no leading or trailing blanks.3.
fileid (ft) is not a defined FILEDEF or DLBL ddname.4.

If fn is not specified and no default is assigned, then ft is treated as being the fn value, fm becomes the ft value and ft
defaults as described in syntax note (4) below.

(2) CMS: fn is mandatory when referencing a CMS mini-disk fileid using a field definition.
(3) CMS: A single dot (.) with no intervening blanks may be used to delimit the fn, ft and fm of a CMS mini-disk fileid. If

fileid is an unquoted literal, then use of this dotted notation is mandatory.
(4) CMS: If omitted, fm will default to asterisk (*) on input, and to A1 on output.
(5) CMS: If fileid does not match the format criteria of a CMS mini-disk fileid or is not found on an accessed disk, any

default values for fn and fm are dropped from the fileid and it is treated as a Unix-like file path. This identifies a file on
the CMS byte file system (BFS) or networked file system (NFS).

z/OS fileid:

 (6) (7)
 +-- prefix. -+ +------ . -------+
 | | v |
 |----+-+------------+---+-- qualifier ---+----+-----------------------+-+----|
 | | | |
 | +- (- member_name -) -+ |
 | |
 | |
 +-------------------| Unix-like fileid |---------------------------+
 (8)

z/OS fileid Syntax Notes:

(6) z/OS: A prefix qualifier equal to the defined TSO prefix, otherwise the ACF userid associated with the SELCOPY
execution, is automatically included in fileid if both of the following are true:

fileid is an unquoted literal or a field definition which does not include enclosing quotes or apostrophes as
part of the field text.

1.

Environment option DSNPFX=YES is in effect.2.

If a prefix is included but the open of fileid fails, then the open is reattempted for fileid without prefix. This subsequent
attempt to open fileid may be suppressed by explicitly specifying DSNPFX=YES on the I/O operation.

(7) z/OS: A single dot (.) is used with no intervening blanks to separate each, up to 8 character qualifier in the up to 44
character MVS data set name fileid.

(8) z/OS: If fileid does not match the format criteria of an MVS data set name (with an optional library member name) or
is not recognised as a cataloged data set, any default prefix value is dropped from the fileid and it is treated as a
Unix-like file path. This then identifies a file in the z/OS hierarchical file system (HFS or ZFS) or a mounted networked
file system (NFS).

Chapter 3. Data Elements and References Fileid Clause

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 80

Unix-like fileid:

 (9)
 +-- /working_dir/ --------------------+ +----------+
 | | v |
 |----+-------------------------------------+--+----------+--- filename ------|
 | | | |
 +-- / --------------------------------+ +-- dir/ --+

Unix-like fileid Syntax Notes:

(9) A single slash (/) or backslash (\) is used with no intervening blanks to separate each level of directory in the file path.
One or other of these characters, or a combination of both, may be used in any Unix or Windows fileid specification.

Windows fileid:

 (9)
 +-- current_disk:\working_dir\ -------+ +----------+
 | | v |
 |----+-------------------------------------+--+----------+--- filename ------|
 | | | |
 | (11) | +-- dir\ --+
 | +--------+ +- \working_dir\ -+ |
 | v | | | |
 +--+- disk -+- : -+-----------------+-+
 | |
 | +-- current_disk: --+ |
 | | | |
 +-+-------------------+---- \ --------+
 | |
 +-- \\hostname\ ----------------------+
 (10)

Windows fileid Syntax Notes:

(10) Double slash (//) or backslash (\\) at the start of the fileid identifies it as a UNC (Universal Naming Convention) file
path which starts with a networked computer host name specification.

(11) Multiple disk letters may be specified only on an input fileid being read with DIR or DIRDATA. This indentifies the fileid
as a mask used to select matching fileids from across multiple disks.

Parameters:

VM/CMS fileid
fn

An up to 8 character CMS mini-disk file name.

ft
An up to 8 character CMS mini-disk file type.

fn and ft may be separated a single "." (dot/period) with no intervening blanks or, unless fileid is specified as
an unquoted literal, any number of blanks.

fm
A 1 or 2 character CMS mini-disk file mode. The file mode identifies the disk letter on which a mini-disk
volume is accessed.

ft and fm may be separated a single "." (dot/period) with no intervening blanks or, unless fileid is specified as
an unquoted literal, any number of blanks.

On input only, asterisk (*) may be specified for fm so that SELCOPY scans each accessed CMS volume in
alphabetical order for the specified fn.ft, and processes the first occurrence found.

z/OS fileid
prefix

The prefix value identifies the high level qualifiers that SELCOPY automatically prefixes to an unquoted data
set name fileid specified in the program or via a SELCOPY command parameter.

If executing in a z/OS TSO environment, prefix is the defined TSO prefix value. In all other environments (e.g.
batch), prefix is the prevailing ACF userid.

qualifier
An up to 8 character MVS data set name (DSN) qualifier. Each qualifier specified must be separated by a "."
(dot/period) with no intervening blanks. Any number of qualifiers may be specified to identify an existing,
cataloged data set.

Chapter 3. Data Elements and References Fileid Clause

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 81

The total length of all qualifiers, including separating dots and implied prefix, may not exceed 44 characters.

member_name
An up to 8 character MVS PDS or PDSE library member name enclosed in "()" (parentheses).

The closing parenthesis ")" must be one of the 9 characters following the opening parenthesis "(" and
member_name must immediately follow the opening parenthesis to satisfy SELCOPY's interpretation of fileid
as a PDS/PDSE member reference.

Unless specified as an unquoted literal, any number of blanks may exist between the end of the library DSN
and the opening parenthesis "(" and also between the end of member_name and the closing parenthesis ")".

Unix-like fileid
Identifies a fileid that obeys the POSIX standard. Note that the file directory names that comprise these types of fileid
are case sensitive. For this reason, unquoted literal fileids are not upper cased by SELCOPY.

working_dir
The current (present) working directory as identified by the pwd Unix shell command.

The working_dir includes all directories in the working directory hierarchy starting from the root directory "/". It
is included as the fileid prefix only if the first character of the fileid is not "/" (slash) or "\" (backslash).

Unless specifically changed, working_dir is usually the user's defined home directory.

dir/
A directory within the file path directory hierarchy. Each dir specification must be followed by a "/" slash or "\"
backslash, separating it from the next directory specification or the file name.

If fileid begins with "/" or "\", the first dir specification corresponds to a directory in the root directory.

filename
The name of the file to be processed.

Windows fileid
current_disk

The current disk letter.

current_disk is included as the fileid prefix only if the first character of the fileid is not "//" (double slash), "\\"
(double backslash) or a disk specification.

working_dir
The current directory as identified by the chdir Windows command shell command with no parameters.

The working_dir includes all directories in the current directory hierarchy starting from the specified disk or the
current_disk. It is included only if the first character of fileid or the first character following a disk specification
is not a "/" (slash) or a "\" (backslash).

disk:
A disk volume letter followed by ":" (colon).

A number of disk letters may be specified for READ DIR or DIRDATA input only.

\\hostname\
A networked resource server name prefixed by "//" (double slash) or "\\" (double backslash), and followed by
a single "/" slash or "\" backslash.

Use of hostname identifies the fileid as a network file referenced using the network Universal Naming
Convention (UNC).

dir/
A directory within the file path directory hierarchy. Each dir specification must be followed by a "/" slash or "\"
backslash, separating it from the next directory specification or the file name.

If fileid begins with "/" or "\", the first dir specification corresponds to a directory in the root directory of disk or
current_disk.

filename
The name of the file to be processed.

File Name

A file name is a mandatory, up to 8 character programmer defined name used by SELCOPY to reference an individual input or
output data object. Throughout this document, the term fname is used to represent a file name.

An explicit or implicit fname specification is mandatory on all SELCOPY I/O operations. Also, since SELCOPY is capable of
processing a number of input and output data objects simultaneously, fname may be specified on condition operations and
sub-operations (IF, AND, OR) to test the current status of a specific input file. e.g. IF EOF and IF INCOUNT. If no fname is

Chapter 3. Data Elements and References File Name

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 82

specified on these types of operations, the prime input object is implied.

All data objects must have an assigned fname. For z/OS data sets and PDS members, this must be the name (ddname) that is
allocated to the DSN. This name may be allocated prior to executing SELCOPY or may be dynamically allocated by SELCOPY
using dynamic allocation parameters on I/O operation control statements. (See Dynamic Allocation.)

Similarly in z/VM CMS, in order to process a file on an accessed z/OS or VSE volume, fname must be a name (ddname) that
has already been allocated to the file via the FILEDEF z/VM CMS command. It is not necessary to have pre-allocated fname for
files belonging to the CMS format file system.

If a file already has an allocated ddname, SELCOPY I/O operations should reference this name as fname with no DSN=fileid
specification. If no such allocation exists (as is always the case for Windows, Linux and Unix systems), at least one statement
containing an I/O operation must exist that associates an fname with the file's fileid.

 READ INFILE DSN='/home/nbj/Documents/readme_selcopy'
 WRITE PDSMBR DSN='CBL.NBJ.JCL(XXJOB01)' * Dynamic Allocation.

STDIN and STDOUT

STDIN and STDOUT refer to the standard input (stdin) and output (stdout) streams for the SELCOPY process. In z/OS and
VM/CMS (non-POSIX) environments, STDIN and SYSIN are synonymous.

So long as SELCOPY's input control statements are not passed via stdin (see SELCOPY parameter -ctl), then standard input
stream may be read by SELCOPY as data. Similarly, if SELCOPY list output is not directed to stdout (parameter -lst), then data
may be written to the standard output stream.

This is of particular use in POSIX environments (e.g. Linux and Unix) and in Microsoft Windows where support exists for pipelines,
a chaining of processes by their standard input (stdin) and output (stdout) streams.

SELCOPY may be one such process so that data piped to it from another process can be read using input operation, READ
STDIN. Similarly, standard output may be piped to another process using output operation, WRITE STDOUT.

Stream input ends when the Unix <Ctrl+D>, end-of-transmission (EOT) control character; the Windows <Ctrl+Z>, end-of-file (EOF)
control character; or end of SYSIN input is encountered. If stdin input is not passed by another process, then input is taken from the
keyboard that started the SELCOPY process. Similarly, if stdout is not passed to another process, output is written to the terminal.

 ls -l | selcopy \!OPT NOBAN \!READ STDIN \!IF POS 1,30 = "'nbj'" \!THEN WRITE STDOUT \!END | sort -

Database Tables

Supported only for SELCOPY on Microsoft Windows, database and spreadsheet tables may be processed for input and output via
an ODBC (Open Database Connectivity) client interface. To do this, SELCOPY relies on the appropriate ODBC drivers and client
software having been successfully installed and configured on the local system.

Database servers (e.g. DB2, Oracle, MySQL, SQL Server) to which a connection will be made and from which data will processed,
must also have been configured to support access via ODBC.

SELCOPY submits SQL (Structured Query Language) statements to the ODBC interface in order to perform I/O on result tables. It
can also perform immediate execution of SQL statements supported by the database management service. e.g. Commit changes
as well as create and drop database objects.

Like files, a database input result table (a set of columns and rows generated by an SQL query statement) and an output base table
must have an associated fname. Furthermore, at least one I/O operation specifying either TABLE=table_name or
SQL=select_clause must exist to identify a database table object processed by SELCOPY.

 READ INDB1 TABLE="user_objects" WHERE="object_type = 'TABLE'"
 READ INDB2 SQL="SELECT * FROM CBL.APIFUNC"

 WRITE INDB3 TABLE="ZZS.ZZSIQ" FROM 1001

Note that, regardless of a table column's source data type, all input table data is automatically converted to character
representation. Likewise, data referenced as the source values of an output operation to a database table must also be in character
format as specified by SQL INSERT VALUES syntax.

By default, a declared variable of fixed length character data type is automatically defined for each selected input table column.

Each of these variables has the same name as the column to which it applies and, by default, the variables' source fields occupy
consecutive areas starting at position 1 of the work area or input buffer. If the table rows are read into any other position (READ
INTO=n), reference to any of the input table column variable names must include an offset to the position of the input data. (i.e.
varname+n-1)

Chapter 3. Data Elements and References STDIN and STDOUT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 83

SELCOPYi Lists

Supported only on z/OS and VM/CMS systems where SELCOPY (SLC) and SELCOPYi are both components of the SELCOPY
Product Suite, generated list output, as produced by SELCOPYi, may be processed as input by the SLC program.

SLC loads and calls the SLCLIST module to interface with the SELCOPYi list functions Lists produced by SELCOPYi include SMS
storage groups, DASD volumes, VTOC entries, cataloged data sets, library members, HFS files, allocated data sets, enqueued
resources, APF authorised libraries and link list libraries. Each list may be filtered and sorted as required and may include a subset
of the standard list columns.

Like files, SELCOPYi list input must have an associated fname. Furthermore, at least one SELCOPY READ operation specifying
LIST=list_command must exist for each input list object processed by SELCOPY.

The standard list column headers and list_command primary command syntax, appropriate to each type of list, is documented in
chapter "SELCOPYi Command Reference" of the "SELCOPYi Reference and User Guide".

 READ INLIST1 LIST="LSG" * List all SMS Storage Groups.

 READ INLIST2 LIST="LD CBL.SSC.**" WHERE="RECFM='FB' AND LRECL=80"
 READ INLIST3 LIST="LL CBL.SSC.CTL(SQ*)" WHERE="CURSIZE > 36"

All data read from the list is in character format and, by default, a declared variable of fixed length character data type is
automatically defined for each selected list column. If the column data is numeric in nature, the variable is of numeric character
data type.

Each of these variables has the same name as the column to which it applies and, by default, the variable source fields occupy
consecutive areas starting at position 1 of the work area or input buffer. If the list records are read into any other position (READ
INTO=n), reference to any of the list input variable names must include an offset to the position of the input data. (i.e.
varname+n-1)

VSAM Files

VSAM files (data sets) are formats of file processed using IBM's Virtual Storage Access Method. VSAM data set organisations
supported by SELCOPY are as follow:

Key Sequenced Data Set (KSDS)•
Relative Record Data Set (RRDS)•
Entry Sequenced Data Set (ESDS)•

VSAM data sets are native to z/OS systems and no configuration is required for SELCOPY access. SELCOPY will automatically
detect whether a data set is VSAM managed and process it accordingly.

On VM/CMS, VSAM file I/O is supported via the VSE/VSAM program product which must be installed and accessible to the
executing SELCOPY program for successful processing of OS and VSE VSAM files. Additionally, the fileid of any VSAM file
processed by SELCOPY must first be allocated to fname via a DLBL CMS command with option VSAM. Note that VSE/VSAM is no
longer marketed by IBM, however, continues to be supported on current versions of z/VM.

On Microsoft Windows, SELCOPY supports I/O on all the sequential, relative and indexed format files provided by Micro Focus®
products. In particular, the relative and indexed file formats offer similar structure to the RRDS, ESDS and KSDS file formats
provided by IBM VSAM. Micro Focus run-time libraries CBLRTSS.DLL and MFFH.DLL must be available in the search PATH
during execution of SELCOPY in order to process these types of file. Furthermore, SELCOPY environment option MFC must be set
and parameter keyword, VSAM, specified on at least one SELCOPY I/O operation that references the file.

 OPTION MFC
 READ INVS DSN="z:\cc\mfc\TESTDATA" VSAM

Windows Keyboard

Supported only for SELCOPY on Microsoft Windows, a SELCOPY program may output key strokes to the system as though typed
from the local keyboard input device.

This feature provides a method by which text may be dynamically entered in a specific window that is open on the same host in
which SELCOPY executes. This may be a command shell or an application window such as a web browser or 3270 emulator. If the
required window is not open, SELCOPY's SYSTEM command may be used to start the window before writing key strokes to it.

Like files, a single output key stroke stream must have an associated fname. Furthermore, at least one I/O operation specifying
either WIN=window_title must exist to identify the open window to which key strokes will be directed. Any execution of an output
operation on this fname will always switch focus to this window before key strokes are passed.

 WRITE ZOS WIN='Session A' 'LOGON APPLID(SELCOPYI)[CR]'
 WRITE ZOS 'USER123[CR]'

 WRITE SEARCH WIN='Google' FROM 50 AT 101

Chapter 3. Data Elements and References SELCOPYi Lists

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 84

Windows Clipboard

Supported only for SELCOPY on Microsoft Windows, text in the Windows system clipboard may be processed for input and output
using READ CLIP and WRITE CLIP respectively.

This may be of particular use where key strokes have been written to a different window resulting in the copying of selected data to
the clipboard. The SELCOPY program can then read this data from the clipboard for subsequent processing.

READ CLIP is allocated fname CLIPr and WRITE CLIP is allocated fname CLIPw.

 READ CLIP INTO 1

 WRITE CLIP FROM 1001

Data Record Format
Data in file objects is usually organised into a number of distinct lines referred to as data records. The term, record, is used
throughout SELCOPY documentation to refer to input and output lines of data (file records, database table rows, LIST input rows,
etc.)

The format in which record data exists within a file object on a storage device can vary, however, it must be of a format supported
by a file access method provided by the system. On all operating systems, SELCOPY treats data objects as being of fixed length
format (RECFM F), variable length format (RECFM V) or undefined format (RECFM U).

Data objects of fixed length format contain records that are all of the same defined fixed length value. Variable length format data
objects contain records of potentially different, self-defining lengths up to a defined maximum (each record is prefixed by a field
containing the length of the record data). Data objects of undefined format contain data from which record limits do not exist or are
determined by standards established by individual operating systems, applications or access methods.

SELCOPY I/O operations support parameter RECFM to specify the record format of the data object being processed. However,
RECFM should not be specified for the following types of data object where SELCOPY can automatically establish the record
format required:

A SELCOPYi list or ODBC database table object. These are always of fixed length as established by the sum of the
column data maximum widths.

•

A z/OS data set that is not managed by VSAM (e.g. a sequential data set or a PDS/PDSE library member.) For these
types of data set, a RECFM value is usually assigned and recorded in the VTOC (Volume Table of Contents) when the
data set is first allocated.

•

An existing z/VM CMS file. For this type of file object, a RECFM value is usually assigned and recorded in the CMS FST
(File Status Table) when the file is created.

•

An IBM VSAM managed data set or Micro Focus file accessed via the Micro Focus file handler. These are of undefined
format (RECFM U) where the actual format of the data records is determined by the access method.

•

A Windows or Unix-like file that contains records which are delimited by end-of-line characters (the standard format for
text in files of this type). By default, SELCOPY input treats these types of file as undefined format (RECFM U).

•

RECFM should be specified on a SELCOPY I/O operation where the required record format cannot automatically be established or
is not the default used by SELCOPY. e.g.

A new z/VM CMS file.•

A ddname representing a z/VM CMS OS simulated data set which is not managed by VSAM and for which no RECFM
has been defined (via the CMS FILEDEF command).

•

A Windows or Unix-like output file that contains end-of-line characters but the prime input object is not RECFM U.•

A Windows or Unix-like file that does not contain end-of-line characters. i.e. Records may be of fixed length (RECFM F) or
be of one of the supported variable length formats (RECFM V, VB, V2, V3 or MFV).

•

File objects that are of fixed or variable length record format may also be structured so that consecutive records are grouped
together in a block. File objects of this type are assigned a record format of RECFM FB or RECFM VB respectively. File objects
supporting a blocked record format are as follow:

z/OS data sets and z/VM CMS OS simulated data sets.•

Windows or Unix-like output files that are of variable length record format only.•

The following sections include a detailed description of each record format, their relationship with BLKSIZE and LRECL parameters
and the method by which record lengths are determined.

Chapter 3. Data Elements and References Windows Clipboard

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 85

Fixed Length Record Format

Records are all of the same fixed length. This type of record organisation is applicable to the following file definitions:

z/OS and z/VM CMS OS simulated data sets allocated as RECFM F or FB.•

z/OS and z/VM CMS VSAM data sets defined as a RRDS (Relative Record Data Set).•

z/VM CMS files defined as RECFM F•

Windows and Unix-like files processed by SELCOPY I/O with parameter RECFM F or FB.•

Micro Focus Sequential and Relative defined as having fixed length records.•

SELCOPYi List and ODBC table objects.•

The length of each VSAM RRDS data record processed by a SELCOPY I/O operation is the defined RECORDSIZE value. For
other file types, the record length is defined by the allocated LRECL value or the value specified by the LRECL parameter on the
SELCOPY I/O operation itself.

For z/OS and z/VM CMS OS simulated non-VSAM data sets, a file containing blocked, fixed length records must be allocated with
RECFM FB and a BLKSIZE value which is a multiple of the fixed record length (LRECL). This BLKSIZE value determines the size
of the I/O buffer used by access method services.

Specific blocking of z/VM CMS RECFM F files is not supported. For these types of file, all internal data management such as
blocking is handled by CMS.

For Windows, Unix-like and Micro Focus files, there is no concept of fixed length record blocking and so RECFM F and RECFM FB
are synonymous. SELCOPY reads or writes fixed length data using an I/O buffer which has size determined by the BLKSIZE
parameter (default 2048 bytes). The buffer size does not need to be a multiple of the LRECL value since SELCOPY I/O processing
copes with the possibility of incomplete record data occupying the last bytes of the buffer.

When reading a Windows or Unix-like file with parameter RECFM F, the length of the last record in the file may be shorter than the
specified input LRECL. If this is the case, then following the READ operation the value of the internal variable, LRECL, will be the
length of the short record.

Output to any RECFM F file will truncate long records and pad short records to the fixed length using the FILL character. Windows
or Unix end-of-line characters will not be appended to RECFM F output records. If record padding is not desirable, then RECFM U
output should be used with EOL NO. e.g.

 READ ABC LRECL=100 * Input file of 441 bytes, LRECL implies RECFM F.
 WRITE OUTF LRECL=100 * Writes 5 RECFM F records, all of length 100.
 WRITE OUTU RECFM U EOL=NO * Writes 4 records of length 100, 1 of length 41.

Variable Length Record Format

Records may be of different lengths. This is type of record organisation is applicable to the following file definitions:

z/OS and z/VM CMS OS simulated data sets allocated as RECFM V or VB.•

z/OS and z/VM CMS VSAM data sets defined as a KSDS (Key Sequenced Data Set) or ESDS (Entry Sequenced Data
Set).

•

z/VM CMS files defined as RECFM V•

Windows and Unix-like files processed by SELCOPY I/O with parameter RECFM V, VB, V2, V3 or MFV.•

Micro Focus Record Sequential, Relative and Indexed files defined as having variable length records.•

The lengths of records processed by VSAM I/O on a KSDS or ESDS may vary up to the data set's maximum defined
RECORDSIZE value. Note that SELCOPY reports this maximum value in the BLKSIZE column of the list output summary block.
Similarly, Micro Focus format I/O will return records with varying lengths as determined by the file's defined organisation.

z/OS and z/VM CMS OS simulated data sets of RECFM V or VB have a maximum record length as defined by the allocated
LRECL value. This value includes the length of the 4-byte binary record length field prefix known as the RDW (Record Descriptor
Word). When records are read from a RECFM V or VB data set, the SELCOPY option RDW/NORDW determines whether the
RDW field is included in the record data. If the records are to be organised in blocks, the data set must be allocated with RECFM
VB and a BLKSIZE value which defines the maximum size of the record blocks. Each block of records is prefixed by a 4-byte binary
block length field known as a BDW (Block Descriptor Word). The allocated BLKSIZE value determines the size of the I/O buffer
used by access method services.

Records belonging to z/VM CMS files defined as RECFM V do not have an RDW and have no specific BLKSIZE to define record
blocks. For these types of file, all internal data management, including blocking, is handled by CMS. For this reason, the record
format is undefined to SELCOPY and so RECFM V is synonymous with RECFM U. CMS RECFM V files are reported as being
RECFM U in the list output summary block.

Chapter 3. Data Elements and References Fixed Length Record Format

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 86

Variable length record processing, where each record has a length field prefix, is also supported by SELCOPY I/O for Windows and
Unix-like files. Because record formatting of this type is not standard for these types of file, SELCOPY must perform additional
processing to establish individual record lengths. A number of variable record formats are supported, and so the required RECFM
type must be specified on the SELCOPY I/O operation as follows:

RECFM V

Processes variable length records that are exactly the same format as that supported by RECFM V data sets on the z/OS
platform (i.e. records are prefixed by a 4-byte binary RDW.) This is of particular use in processing data set ported from a
mainframe environment.

By default, specifying RECFM V on a SELCOPY I/O operation is equivalent to specifying RECFM VB, unless option NOBDW is
also specified. NOBDW indicates that the records are unblocked.

RECFM VB

Equivalent to RECFM V with option BDW (the default setting) applied.

The specified BLKSIZE value (default 2048) is used to define the maximum size of a block and so the I/O buffer size for the file.
Records are de-blocked (input) or blocked (output) by stripping or adding a BDW and RDWs as applicable.

On input, if a BDW contains a value greater than the BLKSIZE value, ERROR 537 (RECFM=V BDW/RDW value exceeds
BLKSIZE or LRECL) is returned.

RECFM V2

Similar to RECFM V with option NOBDW, RECFM V2 processes unblocked, variable length records that have 2-byte binary
length fields. Unlike RDW for RECFM V, the record length field values do not include their own (2-byte) length, but only the
length of the data.

RECFM V2 was introduced to process files supported by certain COBOL compilers and SORT utilities on Windows and Unix
platforms.

Example of RECFM V2 input:

 READ 'rcfm-v2.fil' INTO 5 RECFM V2 RDW * Override default NORDW.
 WRITE 'c:\tmp\rcfm-u.tmp' FROM 5 RECFM U * Kills 2-byte RDW, uses EOL.
 CVCH 2 AT 5 TO 1 * Get readable RDW.
 POS 5 = ' ' * Separate prefix from data.
 LRECL = LRECL+4 * Account for extra 4 bytes for hex prefix.
 PRINT * Data Record with hex prefix giving length.

RECFM V3

Supported for SELCOPY I/O on FTP Block Mode files.

When FTP is used with "MODE B" to transfer a mainframe data set, allocated as RECFM VB, to a file on a Windows or Unix
platform, the BDW at the start of each block is stripped and the 4-byte RDW at the start of each record is replaced with a 3-byte
binary record prefix.

The first byte of the prefix contains flag indicators as follow:

x'80' End of data block is end-of-record.
x'40' End of data block is end-of-file.
x'20' Suspected errors in data block.
x'10' Data block is a restart marker.

The next 2 bytes hold the length of the logical record.

The format of block transmission mode files is documented in detail by the Internet Engineering Task Force RFC #959 for FTP
at URL:

http://www.rfc-editor.org/rfc/rfc959.txt

RECFM MFV

RECFM MFV allows input and output of Micro Focus variable length, record sequential files without having to execute calls to
the Micro Focus file handler.

Chapter 3. Data Elements and References Variable Length Record Format

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 87

http://www.rfc-editor.org/rfc/rfc959.txt

These types of file have a header record which is bypassed by SELCOPY's READ operation, so that the first record returned is
the first real data record. The header record (length 128) is saved in storage by SELCOPY and made available to the user via
POS FHDR.

Example of RECFM MFV input:

 READ 'microfoc.fil' RECFM MFV * Header Record is bypassed.

 IF EOF
 THEN PRINT TYPE=D FROM POS FHDR LEN 128 STOPAFT 1 * Header Record.
 ELSE PRINT LEN 60 STOPAFT 22 * Data Records.

Undefined Record Format

Records are of undefined length. This is type of record organisation is applicable to the following file definitions:

z/OS and z/VM CMS OS simulated data sets allocated as RECFM U.•

Windows and Unix-like files.•

For z/OS and z/VM CMS OS simulated data sets allocated as RECFM U, I/O processing is performed on physical records (blocks)
so that the length of a record is the block size. SELCOPY may process a data set of any record format as undefined by specifying
RECFM U on the I/O operation.

Undefined record format is default for Windows and Unix-like files, which include STDIN, STDOUT and the Windows clipboard,
where end-of-line characters denote the end of a record. The standard end-of-line characters used in a Microsoft Windows
environment is carriage-return, line-feed (CRLF) and in a Linux or Unix environment, just line-feed (LF).

SELCOPY supports the EOL parameter to specify the end-of-line characters to be used for RECFM U input and output of Windows
and Unix-like files. Supported EOL values are:

EOL ASCII EBCDIC Description
CRLF X'0D0A' X'0D15' Default for Windows, z/OS HFS/ZFS and z/VM BFS.
LF X'0A' X'15' Default for Linux and Unix file systems.
CR X'0D' X'0D'
constant A quoted or hex character constant of any length.
NO No end-of-line characters are used.

Unless end-of-line characters are explicitly defined via the EOL parameter, SELCOPY input of Windows or Unix-like files will use
any of the supported EOL end-of-line characters (CRLF, LF or CR) as record delimiters. SELCOPY reads a block of data into the
input buffer, with buffer size determined by the BLKSIZE value (default 2048), and de-blocks the records using the record
delimiters. If no record delimiter is found or EOL NO has been specified, the input record will comprise all data in the input buffer.

Note that end-of-line record delimiters are not included in the record data presented to the program, nor are they included in the
input record length value assigned to internal variable, LRECL.

Likewise for RECFM U output, SELCOPY will generate end-of-line characters following each record written unless end-of-line
characters are suppressed via EOL NO. The end-of-line characters used will be those defined by the EOL parameter on the
WRITE statement. If EOL is not specified, CRLF is used on Windows, LF on Linux and Unix systems and CRNL for z/VM BFS and
z/OS HFS/ZFS output.

Chapter 3. Data Elements and References Undefined Record Format

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 88

Chapter 4. SELCOPY Operations

This chapter is a reference to all operations and parameters supported by SELCOPY.

It includes a complete description of each operation's syntax, its classification and the action it performs.

Operation Classification

SELCOPY operations are classified as executing either during control statement analysis or during selection time processing.

Operations executed during control statement analysis are program environment operations, are non-conditional and are executed
once only when the statement containing the operation is read by SELCOPY. These operations may be interspersed with selection
time operations, although it is recommended that, whenever possible, environment options, variable declarations and equated
symbol definitions occur before all other operations.

Specifically, these operations are:

Operation Description
DECLARE Declare a variable.
END Denote the end of control statement input and, if READ CARD exists, the

start of in-line data input.
EQU Define an equated symbol association.
INCLUDE Nominate the fileid of a file containing SELCOPY control statements to be

inserted and processed by SELCOPY at the INCLUDE operation location.
OPTION Specify environment options for the SELCOPY execution.

All other operation and assignment statements are executed at selection time and are subject to the rules of SELCOPY selection
time processing (implied loop, etc.) and conditional execution (IF/THEN/ELSE). These operations may be executed any number of
times as dictated by the logical flow of processing.

Parameter Specification

In the syntax diagrams for each operation described in this chapter, operation parameter keywords occur in an order whereby
related parameters are grouped together. Although these diagrams specify a logical sequence in which parameters may be
specificied, it is generally the case that they may be specified in any order. e.g.

 LOG STOPAFT=10 REPLY 5 AT 101 'Continue? (Yes/No): '

Common Parameters

Some parameters, which relate specifically to selection time processing of an individual statement, are common to all statements
assigned a selection identifier. This includes statements that execute a selection time operation (other than IF/AND/OR) or perform
a value assignment.

Although referenced in the syntax diagrams of operations within this chapter, with only a few exceptions the affect of these
parameters is the same for all operations. Therefore, they are documented separately, with operation specific exceptions included
where applicable.

NOPCTL, NOPRINT, NOPSUM

Environment options NOPCTL, NOPRINT and NOPSUM (synonym NOPTOT) are parameters of the OPTION operation. However,
they may also be specified as parameters on any other operation or assignment statement, including IF/AND/OR.

These options are used to suppress diagnostic information from being written to the SELCOPY list output. Specifically, NOPCTL
will suppress further control statement output, written during control statement analysis, and NOPSUM will suppress summary
block output, written at SELCOPY end-of-job. NOPRINT is equivalent to specifying both NOPCTL and NOPSUM.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 89

Note that only the disabling form of these options may be specified on any operation or assignment statement. Their equivalent
options to re-activate control statement and summary block output (i.e. PRTCTL and PRTSUM) are not supported in this way.

See the OPTION operation for use of PRTCTL/NOPCTL, PRTSUM/NOPSUM and NOPRINT.

STOPAFT

Applicable on any operation or assignment statement for which a selection identifier has been assigned, the STOPAFT parameter
specifies a decimal integer constant value which is the maximum number of times that statement can be selected for execution
over the course of the program execution.

SELCOPY maintains a count of the number of times each statement selection is executed. When this count reaches the STOPAFT
value for a particular statement selection, that statement is executed for the last time in the current program run before being
removed from the collection of statements eligible for execution. e.g.

 DO INIT_RTN STOPAFT=1 * Execute a sub-routine once.

Note that the statement selection count includes each repeated execution of that statement caused by a TIMES parameter. e.g. A
single execution of an operation with parameter TIMES=10 will increment the execution count for that selection by 10. If both
STOPAFT and TIMES are specified on a statement, the STOPAFT value is rounded up to be a multiple of the TIMES value. e.g.

 READ INDD TIMES=5 STOPAFT=16 * Process record numbers: 5, 10, 15 and 20.

If the STOPAFT values have been reached for all conditional sub-operation (THEN/ELSE) statements subject to the same
IF/AND/OR tests, then those tests are also removed from the collection of statements eligible for execution.

Similarly, if the STOPAFT values have been reached for all output operations within the program control statements, then
SELCOPY sets immediate end-of-job and the run is terminated. If this occurs when end-of-file has not yet been flagged for the
prime input, then SELCOPY ends with return code 4. Furthermore the file sizes of non-VSAM input data objects, recorded in the
SELCOPY list summary block, reflect only the number of records read and not the total records in the file.

By default, the maximum number of times that a statement is executed is effectively unlimited. The only exceptions to this are as
follow:

Operation Description
Direct READ A READ operation that inputs a record from a file using one of the KEY, RBA or REC parameters

has a default STOPAFT value of 1 if the key, relative byte address or record number specified is a
constant value. e.g.

 READ INKS KEY="0001A"

LOG A LOG operation has a default STOPAFT value of 50. This is to prevent excessive, possibly
unintentional output being written to STDERR/SYSOUT which, by default, is the user's terminal.

ODBC An ODBC operation has a default STOPAFT value of 1 if the sql statement is specified as a
constant value.

PRINT For z/OS and z/VM CMS only, a PRINT operation has a default STOPAFT value a set by the
CBLNAME option, SPrtStopaft. By default, this option is set to 0 which indicates no limit.

An explicit STOPAFT specified on any statement which executes one of these operations will override the default for that statement
only. e.g.

 LOG FROM 50 AT 1 STOPAFT 999 * Override the STOPAFT=50 restriction.

Synonyms: STOP S

TIMES

Applicable on any operation or assignment statement for which a selection identifier has been assigned, the TIMES parameter
specifies a decimal integer constant value which is the number of times that statement will be executed when selected. Each
execution of the statement increments the statement executions count by 1.

 LOG 'Error detected...' TIMES 3 * Output 3 times on each selection.

The exception to this is when TIMES is specified on a CHANGE operation. For CHANGE, the TIMES parameter indicates the
maximum number of changes that can occur for a successful match of the search string within the source text. The execution count
for a CHANGE statement on which TIMES is specified is only ever incremented by 1. e.g.

 CHANGE POS 3, LRECL ':' '#' TIMES 2 STOPAFT 5 * Executed 5 times max.

Chapter 4. SELCOPY Operations NOPCTL, NOPRINT, NOPSUM

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 90

ADD
Performs an arithmetic addition of two, signed numeric source values, the result of which is assigned to a target variable or stored
in a target field.

Syntax:

 (2)
 +-- INTO source_2 --+
 (1) (2) | |
>>-- ADD --- source_1 --- TO ---+-- source_2 --+-------------------+-+------->
 | | | |
 | +-- INTO target ----+ |
 | (3) |
 | |
 +-- expr --------- INTO target ------+
 (3)

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) source_1 must be of numeric or character numeric data type and may be specified as a constant, an arithmetic
expression (expr), a declared variable or as a field definition of type 2 (field_p1p2) or type 3
(field_nATp).

(2) source_2 must be of numeric or character numeric data type and may be specified as a declared variable or as
a field definition of type 2 (field_p1p2) or type 3 (field_nATp).
If INTO target is specified, source_2 may also be specified as a constant value or an arithmetic
expression (expr).

(3) target may be specified as a declared variable or as a field definition of type 2 (field_p1p2), type 3
(field_nATp) or type 4 (field_pFMT).

Description:

Variables and field definitions that constitute the source values and target of the ADD operation may be of different numeric or
character numeric data types.

When the source and target values are of different data types and/or if an arithmetic expression or constant value is specified as a
source field, then values are converted to a common numeric data type prior to performing the addition. The selected common data
type will have a precision and scale which is sufficient to manage the maximum precision and scale of the resultant value.

Any rational number having a fraction value, will be stored internally as a double precision (8-byte) floating point number.
Therefore, all fields in the operation will be converted to double precision floating point data type and then floating point arithmetic
used.

If a target or source value is expressed as a field definition without a TYPE parameter, the default data type attributed to that field
will be the same as the first field definition within the command syntax to have TYPE specified. If no such field definition exists, the
default data type is packed decimal integer (TYPE=P). e.g.

 ADD 4 AT 1 TYPE=C TO 4 AT 6 TYPE=B INTO 4 AT 11 * Default TYPE=C
 ADD 4 AT 1 TYPE=B TO 4 AT 6 TYPE=C INTO 4 AT 11 * Default TYPE=B
 ADD 4 AT 1 TO 4 AT 6 INTO 4 AT 11 TYPE=C * Default TYPE=C
 ADD 4 AT 1 TO 4 AT 6 INTO 4 AT 11 * Default TYPE=P

Rounding will occur as required on the fractional part of the resultant value based on the number of fractional digits (scale) of the
target definition. e.g. If the target variable or field has no scale, the result will be rounded to the nearest integer value by adding 0.5
and dropping the fractional portion.

Parameters:

source_1
Represents a rational numeric value (addend) that is to be added to the value specified by source_2.

TO source_2
Represents a rational numeric value (addend) to which the value specified by source_1 will be added.

Chapter 4. SELCOPY Operations TIMES

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 91

If no target is specified, then source_2 is also the target of the operation. If this is the case, source_2 must be a declared
variable or a field definition.

expr
Represents a numeric or character numeric constant, or an arithmetic expression to be used as the second addend
source value.

Note that source_1 may also be specified in this way. The distinction is made for expr and source_2 because the second
source value must also be a valid target if INTO is not specified. Therefore, if expr is used, INTO target is mandatory.

INTO target
Identifies the declared variable or field definition that is the target of the operation. If the second source value is expr, then
target is mandatory.

If required, data conversion and decimal rounding will be performed on the value before it is assigned to target.

Default is source_2 specified on the TO parameter.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

 DECLARE CELCIUS DEC(5,2) INI=37.0 * Declared variable.

 EQU OREC 1001 * Output record area.

 OPTION WORKLEN 2000 * Work area buffer.

 @VAR = 4 AT 51 TYPE=B * Assign @variable value.

 ADD 22 TO 4 AT 51 TYPE=B
 ADD 4.3 TO 8 AT 101 TYPE=P INTO 8 AT 161 TYPE=F HEX
 ADD @VAR TO CELCIUS INTO OREC+12 FMT='S,SS9.99'

Return Codes:

0 Successful completion.

8 One of the following conditions has occurred:

target has defaulted to source_2, which is of data type binary or floating point, and arithmetic overflow has
occurred. i.e. A positive value has been added to a positive value source_2 and the result is negative or a
negative value has been added to a negative value in source_2 and the result is positive.

1.

The precision of target is not sufficient to contain the resultant value. Truncation has occurred with the loss of
significant digits.

2.

The first byte of a source or target field definition is within the work area but the last byte is located beyond the
end of the work area buffer. The length of the field is reduced so that the last byte of the field is the last byte of
the work area buffer.

3.

At least one source value is treated as being of packed decimal data type but the source data is invalid packed
decimal data.

4.

Chapter 4. SELCOPY Operations ADD

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 92

CALL
Passes control to an external, executable routine (shared object or load module) located in one of the following as applicable to the
operating environment:

A Windows dynamic link library (dll).•
A Unix-style dynamic shared library (so).•
A z/OS load library.•

Syntax:

 +------------+
 v |
>>-- CALL -- routine -------+------------+----------------------------------->
 | |
 +-- parm ----+
 (1)

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) parm A maximum of 16 parameters may be specified.
parm may be a constant, an arithmetic expression (expr) or a declared variable.

Description:

The CALL operation passes control to the named external routine together with a list of parameters using standard linkage as
appropriate to the local system in which SELCOPY is executing.

The value returned by the routine must be an integer which is subsequently used to update SELCOPY's return code value
(RETCODE) if greater than its current value.

z/OS Systems

On z/OS, the called routine is a load module found first within the standard library search path (STEPLIB, JOBLIB, LPA, Link
List). Using standard linkage, the module is passed a single parameter pointer to a list of pointers where the last pointer in this
list has the high order bit on.

Unix and Windows Systems

For all other systems, the routine is a shared object found within a shared library which is itself found within the system's
library search path. (i.e. the path of directories defined by the environment variable "PATH" for Microsoft Windows, "LIBPATH"
for IBM AIX systems and "LD_LIBRARY_PATH" for other Unix systems.) The name of the shared library is established and
subsequently opened when SELCOPY encounters the first CALL operation during control statement analysis.

The name of the shared library and the format of the parameter list are based on the prevailing value for the CALLTYPE
environment option.

CALLTYPE DIRECT
For CALLTYPE DIRECT (the default and recommended value), the named external routine (routine) is called directly
as a function within a shared library with a single parameter pointer to an array of character string pointers. Thus,
every called routine must be defined as:

 int routine (char **parms);

The shared library name for CALLTYPE DIRECT, depends on the prevailing value for the LIBNAME environment
option when the first CALL is identified and the library opened. Note that any change in the value for option LIBNAME
that occurs on a statement processed following the first CALL operation will have no effect. This is because
SELCOPY will not perform another library open for subsequent CALL operations.

If a value has been specified for LIBNAME, the named shared library will be used. Otherwise, the default library name
is libselc.dll for Windows and libselc.so for Unix systems.

For further details on routine linkage, endianness and compile and link requirements, please refer to the sample
C/C++ header (slccall.h) and source (slccall.c) files provided with the product install material.

Chapter 4. SELCOPY Operations CALL

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 93

CALLTYPE VIA_SLCCALL
For CALLTYPE VIA_SLCCALL, the function slccall is called with two parameter character pointers, the first a pointer
to the function name to be executed (routine) and the second a pointer to an array of character string pointers to
ultimately be passed to routine. The controlling slccall routine needs to be adapted so that it tests the name of routine
and then calls a function of the same name with a parameter equal to the second parameter pointer passed to slccall.
e.g.

 int slccall (char *routine, char **list)
 {
 if (strcmp(nam, "routine") == 0) return routine(list);
 return -1; // Negative return value to indicate routine not found.

The slccall routine must exist in a shared library named slccall.dll for Windows, libselc.sl for HP-UX Unix and
slccall.so for all other Unix systems.

The linkage provided by option CALLTYPE VIA_SLCCALL exists only to support routines written for CALL operations
executed by releases of SELCOPY prior to version 2.08 build 902. It is recommended that this type of linkage no
longer be used.

Parameters:

routine
The name of an external routine to which SELCOPY will pass control.

For z/OS, this is an up to 8 character load module name. For all other systems, routine is the name of a shared object
belonging to a Unix dynamic shared library (.so) or Windows dynamic link library (.dll).

parm
An input parameter of numeric integer or character data type that will be passed to the called routine. Each parameter is
referenced in the external routine as a pointer to (the address of) an area of storage.

If the parameter is numeric or character numeric, then 1 is subtracted from the value and it is used as an offset from the
base storage address (i.e. position 1 of the work area or input record buffer). Thus, a parameter pointer for a numeric
value will address the area of storage at this offsetted position. e.g. parameter value 1 points at position 1 of the work
area.

If the parameter value is of character data type, the pointer will be the address of the character text. For declared
variables, this will be the address of the character variable's source field. For character constants, it will be an address of
an area of storage containing the null terminated constant value.

If the source field of a declared variable is passed as a parameter, the pointer will be the source field address. This is the
method by which the current value of a numeric or character numeric variable is passed to the external routine.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

z/OS Assembler Routine

The following simple Assembler source is assembled and link edited to create a load module CALLTEST. The routine uses the
character addressed by the first parameter to replace each character at positions in storage addressed by subsequent
parameters.

 CALLTEST CSECT
 USING *,15
 STM 14,12,12(13) Save registers.
 L 2,0(1) 1st Parm, Source.
 IC 3,0(2)
 LOOP LTR 2,2 Test the flag bit which makes value negative.
 BM EXIT If we've just done last one. (Branch Minus)
 LA 1,4(1) Next Parm pointer, Destination.
 L 2,0(1)
 STC 3,0(2)
 B LOOP
 EXIT LM 14,12,12(13) Restore registers.
 LA 15,243 Set a Return Code, other than 0.
 BR 14
 END

The following SELCOPY program calls routine CALLTEST.

Chapter 4. SELCOPY Operations CALL

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 94

 DECLARE BPOS BIN INI=18 * Variable integer value.

 OPTION WORKLEN 100 * Work area auto initialised to blanks.
 PRINT * Print a blank line length 80.

 CALL CALLTEST 'X' BPOS 5 10 15 20 25
 * Will also set Retcode=243.
 PRINT * Should have "X" in pos 18,5,10,15,20 and 25.

 IF POS 26, 33 = 'X' * Should succeed at pos 30 and set @ ptr.
 THEN CALL CALLTEST X'E9' @+8 @+11 LRECL-32 * (X'E9' is 'Z')

 PRINT * Should now have Z in pos 38,41 and 48.

Unix or Windows C++ Routine

The following simple C source function, dupstr, is compiled and linked as a shared object in library libselc.so. The routine
copies the null terminated character string pointed to by the first parameter, to positions in storage addressed by the remaining
pointers in the parameter list.

 int dupstr (char **list)
 {
 int i;
 int len;
 char *src; /* Source data elem. */

 if (!list[0]) return 0; /* Do nothing if no parms. */
 src = list[0]; /* Source data. */
 len = strlen(src);
 for (i=1; list[i]!=NULL; i++)
 memcpy (list[i], src, len); /* Duplicate a string. */
 return 247;
 }

The following SELCOPY program calls routine dupstr.

 DECLARE SOURCE CHA(20) INI="Hello World"
 DECLARE DEST1 BIN INI=8

 OPTION WORKLEN 100 * Work area auto initialised to blanks.
 PRINT * Print a blank line length 80.

 CALL dupstr SOURCE DEST1 29
 * Will also set Retcode=247.
 PRINT * "Hello World" in pos 8 and 29.

Chapter 4. SELCOPY Operations CALL

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 95

CENTRE
Centralise text in a character source value.

Syntax:

 +- FROM --+ +-- TO --- source ---+
 | | | |
>>--- CENTRE ----+---------+-- source ----+--------------------+------------->
 | |
 +-- TO --- target ---+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

CENTRE CENTER ADJC

Description:

The text represented by the source character value is centralised and assigned to the target value. The target location may overlap
storage at the source value location and if target is not specified, then the source value is updated.

The source text value is centralised in an area of storage containing all blank characters and of length equal to the target value field
area if specified, otherwise the length of the source value field area.

 DECLARE CVAR CHAR(20) INI='Hello'
 CENTRE CVAR * ,....1....,....2....,
 PRINT CVAR 'World' * Prints: " Hello World"

Multiple consecutive blank characters that exist between non-blank characters in the source value text, are condensed to a single
blank character in the centralised value. e.g.

 POS 101 = "xxx yyy zz" * ,....1....,....2
 CENTRE 15 AT 101 TO POS 1, 20 * To get: " xxx yyy zz "

Parameters:

FROM source
References the character text value to be centralised. source may be specified as a declared variable of character data
type, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) character field definition.

If TO target is specified, source may also be specified as a quoted or hex character constant.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of target is implied. Otherwise,
ERROR 69 is returned.

TO target
Identifies the declared variable or Type 1, 2 or 3 field definition that is the target of the operation. If source is a constant
value, then TO target is mandatory.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of source is implied.

Default is TO source.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of CENTRE for the same source and target values is unnecessary and so TIMES should never be
used on the CENTRE operation. See common parameter TIMES for details.

Chapter 4. SELCOPY Operations CENTRE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 96

CHANGE
Change occurrences of a text string value in a character source.

Syntax:

>>--- CHANGE ---+-----------+--+-| Search String |--+-+-- replace_string --+->
 | | | | | |
 +- source --+ +-- NULL ------------+ +-- NULL ------------+

 >--+----------+--+------------------------+--+-----------------+------------>
 | | | | | |
 +- CASEI --+ +- HITS --+- @variable --+ +- FILL -- char --+
 | |
 +- DCLVar -----+

 +- PTR --- @ ------------+
 | |
 >--+------------------------+--+----------------------------+--------------->
 | | | |
 | +- @ ----------+ | +- MATCHLEN -+- @variable -+-+
 | | | | | |
 +- PTR -+--------------+-+ +- DCLvar ----+
 | |
 +- @variable -+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Search String:

 |---+------------------- char_constant -------+-----------------------------|
 | |
 +-- REGEXP --------- regexp --------------+

Synonyms:

CHANGE C CH CHG

Description:

Operating on character data only, the CHANGE operation will scan the source text value for the every occurrence of a specified
search string and replace the matching text with the specified replacement string (replace_string).

Using the TIMES parameter, the operation may be restricted to a limited number of occurrences of the search string that occur first
within the source text. Following a successful search and replace, the next, repeated execution of the operation begins the scan for
the search string at the character following the replaced text. i.e. occurrences of the search string within the replaced text will not be
included in the scan. e.g.

 POS 1 = "ABCDEFG ABCDEFG ABCDEFG"
 CHANGE 80 AT 1 "ABC" "abc" TIMES 2 * To get: "abcDEFG abcDEFG ABCDEFG"
 * (only first 2 occurrences.)

 CHANGE 80 AT 1 "EFG" "EFG#" TIMES 2 * To get: "abcDEFG# abcDEFG# ABCDEFG"
 CHANGE 80 AT 1 "BCD" "bcd" TIMES 1 * To get: "abcDEFG# abcDEFG# AbcdEFG"

Regular expressions may be used to specify the search string value. Furthermore, tagged sub-expressions in the search string,
may be used to identify text patterns that are to be included in the replace_string. A tagged sub-expression forms part of the regular
expression pattern string and is defined by enclosing a regular expression definition within pairs of "{ }" (braces). The nth tagged
sub-expression in the search string may be referenced by &n in positions of the search string and/or replace_string that follow.
When a match is found for the search string the text matching the tagged sub-expression n is substituted for each occurrence of &n
that follows. e.g.

 DECLARE WK1 CHA (26) INI "ABACAC"
 CHANGE WK1 RGX '{A?}&1' '--&1--' * Gives: "AB--AC--"

The special tagged sub-expression reference, &0, treats the entire regular expression pattern search string specification as a
tagged sub-expression. Therefore, it may be used in replace_string to duplicate text matched by the search string. e.g.

Chapter 4. SELCOPY Operations CHANGE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 97

 DECLARE WK1 CHA (26) INI "ABACAC"
 CHANGE WK1 RGX 'B?@' '&0&0' * Gives: "ABACACBACAC"

If the length of the replacement text is less than that of the text matching the search string, then characters within the source value
that follow the replaced text, are shifted left. Unless source is a variable length character declared variable, then it is padded on the
right using the character specified by the FILL parameter.

If the length of the replaced text is greater than that of the text matching the search string, then characters within the source value
that follow the replaced text, are shifted right and truncated. The replaced text may itself be truncated if it extends beyond the
length of the source text. SELCOPY return code 8 is set if a truncated character does not match the pad character specified by the
FILL parameter (default blank).

Parameters:

source
References the character value in which text will be changed. source may be specified as a declared variable of character
data type, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) character field definition.

If source not specified, source defaults to be a field definition starting at position 1 with length equal to the prevailing value
of the variable LRECL. (i.e. FROM POS 1 LENGTH LRECL).

Search String | NULL | NUL
Specifies the search text string for which the source value will be scanned. It may be specified as one of the following:

char_constant
A quoted or hexadecimal character constant.

REGEXP regexp
REGX
RGX

A regular expression.

Note that, if a regular expression search string contains tagged sub-expressions, then the text matched by these
sub-expressions may be substituted in the text of the replace string using tagged sub-expression references
(&n).

The keyword, NULL or NUL, may be specified to indicate a null (length zero) string value for the search string. Use of a
null search string will force a default value of 1 for parameter TIMES.

The first occurrence of a NULL search string is found immediately before the first character of the source value.

replace_string | NULL | NUL
Specifies the replacement text string used to replace text that matches the search string. The replace_string may be
specified as a quoted or hex character constant. If the search string is a regular expression, then replace_string may
contain tagged sub-expression references, (&n).

The keyword, NULL or NUL, may be specified to indicate a null string value for replace_string. Use of a null replace string
will remove occurrences of text matching search string from source.

An error message is given if a NULL keyword is used in place of both the search string and replace_string.

CASEI
Indicates that the scan for the search string is case insensitive. e.g.

 DECLARE str1 CHAR INIT="ABCDEFG ABCDEFG ABCDEFG ABCDEFG"
 CHANGE str1 'abc' 'zz ' CASEI * To get: "zz DEFG zz DEFG zz DEFG zz DEFG"
 CHANGE str1 'efg' '.' CASEI * To get: "zz D. zz D. zz D. zz D. "

FILL char
PAD

Defines the pad character (char) to be used when the length of the replacement text is less than the length of the text
matching the search string. The pad char may be specified as a quoted or hex character constant of length 1.

It also defines that character that may be truncated without setting SELCOPY return code 8. Truncation occurs when the
length of replacement text is greater than the text matching the search string.

The default is the blank character.

HITS @Variable | DCLVar
HITS nominates an @variable or declared variable (DCLvar) of numeric data type. Following execution of the CHANGE
operation, a value will be assigned to @variable or DCLvar which is equal to the number of occurrences of the search
string that have been replaced in the source text.

If the search string is not found, the value is 0 (zero).

PTR @variable
PTR specifies the name of the @variable to be assigned a value equal to the position of the first occurrence within source
of text matched by the search string. If no match is found, @variable will be unset (set to NULL).

Chapter 4. SELCOPY Operations CHANGE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 98

If TIMES is omitted or a value greater than 1 is specified, CHANGE will attempt to change multiple occurrences of the
search string found within the source data. To obtain the pointer to each matched occurrence, TIMES=1 must be used and
the CHANGE operation executed within a loop until a HITS value of 0 (zero) is returned.

If PTR is not specified, the default @variable, @, is used.

MATCHLEN @variable | DCLvar
MLEN

Use of MATCHLEN is only significant when the search string is of variable length (i.e. expressed as a regular expression).

MATCHLEN specifies an @variable or declared variable (DCLvar) of numeric data type to be assigned a value equal to
the length of the first occurrence within source of text matched by the search string.

If TIMES is omitted or a value greater than 1 is specified, CHANGE will attempt to change multiple occurrences of the
search string found within the source data. To obtain the match length for each occurrence, TIMES=1 must be used and
the CHANGE operation executed within a loop until a HITS value of 0 (zero) is returned.

If no successful match occurs for search string, the assigned value is 0 (zero).

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Unless the search string is NULL, TIMES restricts the number of occurrences (int) of the search string within the source
text for which the text will be replaced. The value int must be specified as a decimal integer constant.

If the search string is NULL, TIMES int specifies the number of times the CHANGE operation will be executed.

If NULL is specified in place of a search string, the default is TIMES 1. Otherwise, every occurrence of the search string
found in source is replaced. Also see common parameter TIMES.

Example:

The following working example demonstrates basic use of the CHANGE operation.

Chapter 4. SELCOPY Operations CHANGE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 99

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/27 18:09 PAGE 1
 --- ---------------- --------

 equ wid 66 * For width of data on a PRINT line.
 option pagewidth=94 datawidth=wid * Worklen=80 provided by default.

 *,....1....,....2....,....3....,....4....,....5....,....6....,.
 dcl a_z cha ini 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ### and ### abcdefghijklmnopqrstuvwxyz '
 dcl nums cha ini 'ABCDEFG 11,222.33 4,555.66 77,888.99 111,222.33 44,555.66 '
 dcl xxx cha ini 'xxxxxxxxxx abc xxxxxxxxxx def xxxxxxxxxx ghi xxxxxx'

 1. line 1 stopaft=1
 2. lrecl = wid

 3. pos 1 = a_z
 4. then print * Original data.
 5. then change a_z '###' '-' times=3 hits=@hits fill='X' * source is a DCLVar.
 6. then pos 1 = a_z * Copy changed data to POS 1 LEN=66.
 7. then do showit '/###/ to /-/'

 8. pos 1 = nums
 9. then print * Original data.
 10. then change ',' NULL times=22 hits=@hits * source is default.
 11. then do showit '/,/ to NULL'
 12. then change ' ' ' ' times=2 hits=@hits stopaft=1 * 2 blanks to 3, 2 times.
 13. then do showit '2 blanks to 3 blanks times 2 '

 14. pos 1 = xxx
 15. then print * Original data.
 16. then change 'x' NULL hits=@hits pad='Z' * Omit TIMES.
 17. then print '@hits = ' @hits fmt=99 " changing /x/ to NULL with fill='Z'"
 18. then space 1
 19. then change NULL '---#' hits=@hits * RC=8 expected.
 20. then do showit "NULL to /---#/ RC=8 as ZZZZ trunc'd."

 21. eoj

 =showit:= desc * The ":" indicates params exist.

 22. print '@hits = ' @hits fmt=99 ' changing ' desc
 23. print * Changed data.
 24. space 2
 25. =return=

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/27 18:09 PAGE 2
 --- ---------------- --------
 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,. ------
 0 1 4 ABCDEFGHIJKLMNOPQRSTUVWXYZ ### and ### abcdefghijklmnopqrstuvwxyz 66
 0 1 22 @hits = 02 changing /###/ to /-/ 66
 0 1 23 ABCDEFGHIJKLMNOPQRSTUVWXYZ - and - abcdefghijklmnopqrstuvwxyz XXXX 66

 0 1 9 ABCDEFG 11,222.33 4,555.66 77,888.99 111,222.33 44,555.66 66
 0 2 22 @hits = 05 changing /,/ to NULL 66
 0 2 23 ABCDEFG 11222.33 4555.66 77888.99 111222.33 44555.66 66

 0 3 22 @hits = 02 changing 2 blanks to 3 blanks times 2 66
 0 3 23 ABCDEFG 11222.33 4555.66 77888.99 111222.33 44555.66 66

 0 1 15 xxxxxxxxxx abc xxxxxxxxxx def xxxxxxxxxx ghi xxxxxx 66
 0 1 17 @hits = 36 changing /x/ to NULL with fill='Z' 66

 0 4 22 @hits = 01 changing NULL to /---#/ RC=8 as ZZZZ trunc'd. 66
 0 4 23 ---# abc def ghi ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 66

 ,....1....,....2....,....3....,....4....,....5....,....6....,.

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1---18 1
 19 1 (***01 RETCD=8***)
 20---21 1

 =showit=
 22---25 4 =ret=

 WARNING (SEL---19) 8 = RETURN CODE FROM SELCOPY

 ** SELCOPY/WNT 3.30.002 2015/10/05 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 2. The CHANGE operation.

Chapter 4. SELCOPY Operations CHANGE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 100

CHOP
Chop a character source value into a number of values to be assigned to SELCOPY declared variables.

Syntax:

 +-- INTO --+ +--------------+
 | | v |
>>--- CHOP ---- source ----+----------+----+--- DCLVar ---+------------------>

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

CHOP PARSE

Description:

The CHOP operation will parse a source character value so that strings of non-blank characters each constitute a value to be
assigned to a declared variable. Each non-blank character string is delimited by either one or more consecutive blank characters or
the end of the source value.

Parsing the source value from left to right, each parsed value is assigned to the next available declared variable following the
source specification. i.e. The first parsed value is assigned to the first declared variable following source, the second value to the
second variable, etc.

If there are more parsed values than variables, then the source is parsed as normal for all but the last variable. The last variable is
assigned a value equal to the remainder of the source value with leading and trailing blanks removed. If there are fewer parsed
values than variables, then the extra variables are assigned a blank value if of character data type, and a value of 0 (zero) if
numeric or numeric character.

If a declared variable is specified which is of numeric or numeric character data type, then its equivalent parsed value is treated as
being of numeric character data type. The numeric value it represents is assigned to the variable.

On assigning a parsed value to a variable of character data type, SELCOPY return code 8 is set and the value truncated if its
length is greater than the maximum defined for the variable.

Parameters:

source
References the character text value to be parsed. source may be specified as a quoted character constant, a declared
variable of character data type, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) character field
definition.

INTO DCLVar
Identifies a declared variable (DCLVar) to which a parsed value will be assigned. The data type of the variable determines
the interpretation (character or numeric) of the parsed value.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of CHOP for the same source value is unnecessary and so TIMES should never be used on the
CHOP operation. See common parameter TIMES for details.

Chapter 4. SELCOPY Operations CHOP

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 101

Example:

The following example demonstrates parse of a source character string, first as character values into fixed length character
variables, then as numeric values into variables of numeric data type.

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/30 14:41 PAGE 1
 --- ---------------- --------

 declare src char(60) ini='110119 1,234,567.85 555,666.9999777 .065'

 declare ch1 char(9)
 declare ch2 char(15)
 declare ch3 char(20)
 declare ch4 char(10)

 declare v1 bin fmt= 's,sss,ss9'
 declare v2 flt (8) fmt= ' z,zzz,zz9.99'
 declare v3 dec (31,4) fmt=' zzz,zzz,zz9'
 declare v4 flt (8) fmt= 'z,zzz.zzzz'

 option datawidth=90

 1. chop src into ch1 ch2 ch3 ch4
 2. print ' ch1="' ch1 '" ch2="' ch2 '" ch3="' ch3 '" ch4="' ch4 '"'

 3. chop src into v1 v2 v3 v4
 4. print ' v1="' v1 '" v2="' v2 '" v3="' v3 '" v4="' v4 '"'

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 9 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 0 1 2 ch1="110119 " ch2="1,234,567.85 " ch3="555,666.9999777 " ch4=".065 " 80
 0 1 4 v1=" +110,119" v2=" 1,234,567.85" v3=" 555,667" v4=" 0.0650" 80
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1----4 1

 ** SELCOPY/WNT 3.30.002 2015/10/05 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 3. The CHOP operation.

Chapter 4. SELCOPY Operations CHOP

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 102

CLOSE
Explicitly close a data object currently open for input or output.

Syntax:

>>-- CLOSE -------+--- | Input Parms | -------+----------------------------->
 | |
 +--- | Output Parms | -------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

The CLOSE operation will close a data object associated with the specified or implied fname, which is currently open for input or
output. If the object is already closed, then no action is taken.

By default, data objects that have been opened during execution of a SELCOPY program, are automatically closed by SELCOPY
at end of job. The CLOSE operation is only required if a data object is to be re-opened or an fname is to be associated with another
object during the course of the program execution.

If a CLOSE operation exists for fname and, for input objects only, its control statement occurs before one that contains a READ
operation for the same fname, then the open of the data object will be deferred until a READ, WRITE or OPEN is executed for
fname during selection time processing.

Following execution of CLOSE, the data object associated with fname will remain closed until another READ, WRITE or OPEN
operation is executed for fname, at which point the appropriate open for input, input update or output will be performed for the
object. If the fileid, list_command, table_name or full_select referenced by the I/O operation is specified as a variable name or field
definition, then the data object is dynamic. In this case the object associated with fname, and therefore opened when the I/O
operation is executed, is determined by the prevailing value assigned to the variable or field definition. Note that, a change to the
value assigned to these variable sources will have no affect on the object associated with fname unless a subsequent open is to be
performed.

Note that execution of an OPEN operation will first perform a close of the object assigned to fname if it is already open. The
difference between CLOSE and OPEN being that OPEN will immediately re-open the object associated with fname having
executed the close.

If no work area is defined and input data is read into position 1 (the default), then following close of an input data object, position 1
will be the start of a blank record of length 80.

CLOSE may be particularly useful if a file object needs to be re-opened using a different I/O method within the same SELCOPY
program. e.g. Records may be written to a file and, when finished, the file may be closed and then read (using a different fname).
See example 2. below.

Parameters specified on the CLOSE operation are those supported by a READ operation for open or data retrieval, or those
supported by a WRITE operation for open or data output. Unless overridden by a subsequent READ or WRITE operation on fname,
these parameters apply to all subsequent I/O operations on fname.

Parameters:

Input Parms
In addition to a specified or implicit fname, CLOSE for an input data object supports any of the Object Open or Data
Retrieval parameters supported by the READ operation as follow.

fileid
BDW / NOBDW
BLKSIZE
DEFER
DIR
DIRDATA
DIRTYPE
DSN
DSNPFX

EOL
ESDS
FILL
FMT
HEADER
KSDS
LIST
LRECL
ODBCPASS

RAW
RDW / NORDW
RECFM
RRDS
SELECT
SEP
SORT
SORTDIR
SQL

SSN
SUBDIR
TABS
TABLE
UPD
USER
VSAM
WHERE

See operation READ for details on parameter usage and descriptions.

Chapter 4. SELCOPY Operations CLOSE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 103

Output Parms
In addition to a specified or implicit fname, CLOSE for an output data object supports any of the Object Open or Data
Output parameters supported by the WRITE operation as follow.

fileid
APPEND
BDW / NOBDW
BLKSIZE
DEFER
DSN
DSNPFX

EOL
ESDS
FMT
FILL
KEYLEN
KEYPOS
KSDS

LRECL
ODBCPASS
RDW / NORDW
RECFM
REUSE
RRDS
SSN

TABLE
TRUNC / NOTRUNC
USER
VSAM
WIN

See operation WRITE for details on parameter usage and descriptions.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of CLOSE for the same data object is unnecessary and so TIMES should never be used on CLOSE.
See common parameter TIMES for details.

Examples:

Example 1.

In the following example, card records (which follow the END operation) are read from the same control statement input file.
Each card record contains the z/OS DSN of a data set for which records are to be scanned for 21st century ISO dates (e.g.
2009/04/12).

The CLOSE operation is used to close the data set associated with INDD once end-of-file has been detected. The next time the
READ operation is executed for INDD, the DSN currently assigned to variable IDSN will be associated with INDD and opened
ready for input.

 DECLARE IDSN NTS(54) * Null terminated char string.
 DECLARE IREC VCHAR(32760) * Variable length char string.

 READ CARD INTO IDSN * Input the new DSN.
 PRINT '*** INPUT DATA SET: ' IDSN * Print the new DSN.
 DO CHECKDATE * Process the data set.
 SPACE 2 * Print 2 blank lines.
 GOTO GET * Get the next CARD input.

==CHECKDATE== ** Print records that have a 21st century data pattern. **
 READ INDD DSN=IDSN INTO IREC * Input a record from DSN.

 IF EOF INDD * If end-of-file.
 THEN CLOSE INDD NORDW * Close data set so that INDD
 * can be re-opened as new DSN.
 THEN GOTO CHECKDATE_END * End sub-routine processing.

 IF IREC = RGX '20:d^2\/:d^2\/:d^2 ' PTR=@DATE * Scan data for date pattern.
 THEN PRINT TYPE=C FROM @DATE * Print the date to verify.

 GOTO CHECKDATE * Process the next record.

 =CHECKDATE_END=
 RETURN * Return to main process loop.

 END
NBJ.£ABC
NBJ.CBLINST.CBL12075.JGE.SELCOPYI.CMX
CBL.JCL(CBLILNKD)

Chapter 4. SELCOPY Operations CLOSE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 104

Example 2.

In the following example, records are copied to an output file. Once all records have been copied, the output file is closed and
then re-opened for input. The copied records are read and printed.

 READ INPF DSN='NBJ.SSCLOS02.DATA' NORDW * Read source file.
 IF EOF INPF * If end-of-file.
 THEN CLOSE OUTF DSN='NBJ.SSCLOS02.DATA.COPY' * Close the output file.
 THEN DO PRINT_COPY * Process the sub-routine.
 THEN EOJ * End-of-job.

 WRITE OUTF * Write the output record.
 GOTO GET * Get the next input record.

==PRINT_COPY== ** Print records written to the copy file. **
 READ COPF DSN='NBJ.SSCLOS02.DATA.COPY' NORDW DEFER * Input deferred.

 IF EOF COPF * If end-of-file.
 THEN GOTO PRINT_COPY_END * End sub-routine processing.

 PRINT * Print the copied record.
 GOTO PRINT_COPY * Get the next copied record.

 =PRINT_COPY_END=
 RETURN * Return to main process loop.

Chapter 4. SELCOPY Operations CLOSE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 105

COMPRESS
Compress a line of data using proprietary compression algorithms or compress data in fixed field positions to a comma separated
variable (CSV) format.

Syntax:

 (1) +- FROM -+
 | |
>>-- COMPRESS --+--------+- source ---- TO -- target ---+-----------------+-->
 (2) (3) | |
 +- | CSV Parms | -+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

CSV Parms:

 +--------+ +- DLM "," --+ +- FILL " "---+
 v | | | | |
 |--- FLEN -+- int --+----+------------+----+-------------+------------------>
 | | | |
 +- DLM char -+ +- FILL char -+

 >-----+------------------------------------+--------------------------------|
 | |
 | +- '"' ---+ +- IFNEC --+ |
 | | | | | |
 +- ENC --+---------+--+----------+---+
 | | | | | |
 | +- char --+ +- STR ----+ |
 | | | |
 | +- ALL ----+ |
 | +- "\" ---+ |
 | | | |
 +- ESC --+---------+-----------------+
 | |
 +- char --+

Syntax Notes:

(1) FROM is mandatory if source is a field definition of type 1 (field_pLENn) but with keyword POS omitted.
(2) source references an area of storage specified by a character constant, a declared variable of character data

type, or as a field definition of type 1 (field_pLENn), type 2 (field_p1p2) or type 3 (field_nATp).
(3) target references an area of storage specified by a field definition of type 1 (field_pLENn), type 2

(field_p1p2) or type 3 (field_nATp).

Description:

COMPRESS and EXPAND operate on single lines of data (usually file object input records) to perform one of the following tasks:

Compress or expand data using SELCOPY's proprietary compression algorithms.1.
Compress or expand values in comma separated format (CSV).2.

For both types of data compression, following execution of the COMPRESS operation the value assigned to internal variable
LRECL is updated to be the length of the compressed data. Furthermore, the storage containing the source data must not overlap
the target storage area.

Specification of a work area is mandatory for COMPRESS.

Data Compression

Storing file data on fixed storage devices may be inefficient, particularly if a file object contains a large number of records that
are long and consist of many embedded blanks and other duplicated characters.

Chapter 4. SELCOPY Operations COMPRESS

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 106

In addition to the hardware and software compression options available on most systems, the COMPRESS/EXPAND operations
may be used to invoke SELCOPY's own proprietary compression algorithms for record data read from or written to a file object.

It should be noted that, if the data being compressed is short and does not contain long chains of repeating characters, then it is
possible that the compressed data is longer than the original source.

CSV Data Processing

Data within database tables and spreadsheets can usually be unloaded into a comma separated variable (CSV) format, where
each column value is separated from the following column value by a delimiter character, usually a "," (comma). In most
processing environments, unloaded database data is the most common source of CSV data.

SELCOPY can also generate CSV format output. Using the COMPRESS operation, data at consecutive fixed positions may be
compressed to create a variable length CSV record in storage.

SELCOPY's CSV data compression operates on values that are arranged at consecutive fixed locations within the source area.
These fixed locations are usually, though not exclusively, determined by an EXPAND operation which has previously been
executed on the CSV data.

Parameter FLEN must be specified in order to invoke CSV data compression instead of SELCOPY's general data compression
utility. The FLEN parameter values identify the fixed lengths of each storage area at which the data values are located. When
compression occurs, each data value is copied to the next available position in the target area with trailing characters, as
specified by the FILL parameter, omitted. Provided the source data area still contains unprocessed values, the value delimiter
character is appended to the value copied to the target area.

By default, the source data values are not checked for blanks or special characters other than the delimiter character as defined
by parameter DLM. If ENC and ESC parameters are both omitted, an error is returned if the source data already contains the
delimiter character. If this occurs, nothing is copied to the target area and internal variable LRECL is set to 0 (zero).

Based on individual characters that exist within the source data, conditional use of enclosing characters (e.g. quotation marks)
or escape characters may be invoked using the ENC or ESC parameters respectively.

Warning: Truncation will not occur when the last value copied to the target area exceeds the target area length. However, an
error will occur if the first character of any of the values falls outside the target area.

Parameters:

FROM source
Specifies a character value or area of storage containing the source data to be compressed. source may be specified as a
character constant, a declared variable of character data type, or as a field definition of type 1 (field_pLENn), type 2
(field_p1p2) or type 3 (field_nATp).

The complete length of character data represented by source will be compressed. If FLEN is specified to indicate CSV
data compression and the length of source is greater than the sum of the specified FLEN values, then the last FLEN value
will be used to define fields in the surplus source data. (See FLEN below.)

If specified as a type 1 field definition but without a length, the field will have a default length equal to the prevailing value
of variable LRECL.

Keyword FROM need not be specified if source is specified as a character constant or a declared variable.

TO target
Specifies the area of storage into which the compressed data will be moved. target may be specified by a field definition of
type 1 (field_pLENn), type 2 (field_p1p2) or type 3 (field_nATp).

If specified as a type 1 field definition but without a length, the field will have a default length equal to that of source.

FLEN int ...
Identifies the COMPRESS operation as being for CSV data generation. FLEN specifies an integer constant value, int, or a
sequence of integer constants that correspond, one-to-one with the lengths of each consecutive, fixed length data area in
source.

If the sum of the integer values specified by FLEN is lower than the length of the source specification, then the last FLEN
value in the sequence is used to identify the lengths of all remaining data fields in source. e.g. FLEN 30 20 indicates
that the data area containing the first value is of length 30 and data areas containing all remaining values are length 20.

If the sum of the FLEN values is greater than the length of the source area, then extraneous values are ignored.

DLM char
DELIM

Specifies the delimiter character char, a character constant of length 1, used to separate each value in the compressed
CSV output.

Default is "," (comma).

Chapter 4. SELCOPY Operations COMPRESS

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 107

FILL char
PAD

Specifies the fill character char, a character constant of length 1, used to pad short values within the fixed length source
data areas.

The COMPRESS operation will strip consecutive occurrences of this character that exist at the end of the source data
areas so that they are not included in the value copied to the target area.

Default is "b" (blank).

ENC char
Specifies the enclosing character char, a character constant of length 1, to be inserted at the start and end of the value
depending on the enclosure options ALL, IFNEC or STR.

Parameters ENC and ESC are mutually exclusive. If ENC is specified without char, '"' (quotation mark) is the default.

Where enclosing characters are to be added to a value, occurrences of the enclosing character that exist as data within
the value are duplicated when copied to the target area. This ensures that the CSV value is in a format which is valid for a
database or spreadsheet load. e.g. If the enclosing character defined by ENC is "'" (apostrophe), O'Connell becomes
'O''Connel''.

The enclosure options that trigger use of enclosing characters are as follow:

ALL
All values, except null values, will be enclosed.

IFNEC
Values will be enclosed if necessary. i.e. values that contain the delimiter (DLM) character or the enclosing
(ENC) character as data. Furthermore, if FILL is assigned a non-blank character, a value containing leading
and/or trailing blanks will also be enclosed.

STR
Values will be enclosed if non-numeric. Numeric values must contain at least one numeric digit (0-9) and may
only contain leading blank characters, numeric digits and a decimal point. Otherwise, the value is considered to
be non-numeric.

Note that non-significant leading zeroes are stripped when a numeric value is copied to the target area.

ESC char
Specifies the escape character char, a character constant of length 1, to be inserted before each occurrence of the
following characters which exist as data within the source value:

A delimiter character (as specified by DLM).◊
An escape character (as specified by ESC).◊

Parameters ENC and ESC are mutually exclusive. If ESC is specified without char, '\' (backslash) is the default.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of COMPRESS for the same source data is unnecessary and so TIMES should never be used on
COMPRESS. See common parameter TIMES for details.

CSV Compression Errors:

If an error is encountered during the COMPRESS operation, then SELCOPY return code 8 is set, processing continues and an
error message is returned in the SELCOPY list output.

Each compression related error message includes the following element:

Field#nn,Len=nn The sequence number and length of the source field in error.
DataLen=nn The length of the value.
TotDestLen=nn The length of the target area.

Possible errors relating to compression of data to CSV format are as follow:

CMPRS Error 06: Field#nn,Len=nn DataLen=nn TotDestLen=nnn Destn area overflow.
An attempt was made to copy a compressed field value to the target area but the next available position falls outside the
target area length (TotDestLen).

Chapter 4. SELCOPY Operations COMPRESS

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 108

CMPRS Error 08: Field#nn,Len=nn DataLen=nn TotDestLen=nnn Source contains DLM.
The delimiter character (DLM) was identified within a value in the source area and neither ESC nor ENC parameters were
specified. No compression takes place and the value for LRECL is set to 0 (zero).

CMPRS Error 09: Field#nn,Len=nn DataLen=nn TotDestLen=nnn Source/Destn overlap.
The source and target areas overlap. No compression takes place and the value for LRECL is set to 0 (zero).

Examples:

Example 1.

The following will compress text defined by a source field of length 80 starting at position 101 of the work area buffer. The target
for the compressed data is another field at position 201 of the work area with length defaulting to that of the source field (i.e. 80
bytes). Note that ERROR 615 and RC=44 will be returned if the 80 byte target field is not large enough to contain all the
compressed data.

 COMPRESS POS 101 LENGTH 80 TO 201

Example 2.

Suppose that a source field of length 100 at position 1 of the work area is comprised of 9 character fields of which the first 2 are
length 15 and the remaining 7 are length 10. The following example will generate CSV output at position 101 of the work area
for the 9 fields using comma (,) delimiters and will enclose all non-null fields in quotation marks (").

The length of the target field is 200 which will easily accomodate the length of the CSV output data. Unused characters
following the generated CSV data in the target field will be filled with blanks.

Note that the FLEN parameter specifies only 3 values. The first 2 correspond to the lengths of the first 2 fields, the third to the
lengths of the third and subsequent fields.

 COMPRESS POS 1, 100 TO 200 AT 101 FLEN=15,15,10 ENC='"' STR

Example 3.

Input text records of fixed length 138, each contain company address data in fixed length fields. In the following example, these
records are read into (assigned to) a character declared variable (INREC) which has a defined length of 138. For demonstration
purposes only, the INREC value is remapped by declared variables that identify the individual company address fields.

CSV output is generated for the address data using colon (:) delimiters. Furthermore, any occurrence of a colon (:) or slash (/)
character in the address data will be prefixed by the default escape character, slash (/). The target field for the CSV data is at
position 1 of the work area with a maximum length of 500.

Following execution of the COMPRESS operation the value of internal variable LRECL is automatically set to be the length of
the generated CSV data. The WRITE operation writes data to the output data object identified by fname ODD, using the default
output field starting at postion 1 of the workarea with length equal to the LRECL value.

 DECLARE INREC CHAR(138)
 DECLARE ID CHAR(008) POS INREC+000
 DECLARE CUST CHAR(030) POS INREC+008
 DECLARE ADDR1 CHAR(030) POS INREC+038
 DECLARE ADDR2 CHAR(030) POS INREC+068
 DECLARE CITY CHAR(030) POS INREC+098
 DECLARE ZIP CHAR(010) POS INREC+128

 OPTION WORKLEN=1000

 READ IDD INTO INREC FILL=' '
 COMPRESS INREC TO 500 AT 1 FLEN=8,30,30,30,30,10 DLM=':' ESC
 WRITE ODD

Chapter 4. SELCOPY Operations COMPRESS

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 109

Example 4.

The following sample SELCOPY output demonstrates how the COMPRESS operation has been used to generate CSV format
data from input records containing values in fixed length fields. Each field is terminated by an or symbol (|) which must be
translated to a blank before the compression can be successfully performed.

The last FLEN value (27) identifies the length of the 3 fields that occur at the end of each input record (source text). The source
text and generated CSV output are printed to illustrate the effect of the COMPRESS operation.

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/11 11:35 PAGE 1
 --- ---------------- --------

 OPTION WORKLEN=500 DATAWIDTH=141 PAGEDEPTH=999

 1. READ CARD INTO 1
 2. PRINT TYPE=S ' ' FROM SCALE STOPAFT=1
 3. PRINT TYPE=S 'Source Data: ' FROM 1

 4. TRAN LRECL AT 1 '|' ' ' * Blank column separators.
 5. COMPRESS LRECL AT 1 TO 201 FLEN=5,5,30,10,27 ENC="'" IFNEC * Compress as CSV.

 6. PRINT TYPE=S 'CSV Output: ' FROM 201
 7. SPACE 1

 END

 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....0....,....1....,....2....,....3.
 Source Data: 10 |2 |Rumour Has It |Adele |2011-01-21 08:00:00.000000|2012-08-02 11:30:36.000000|2011-08-19 12:30:11.000000|
 CSV Output: 10,2,Rumour Has It,Adele,2011-01-21 08:00:00.000000,2012-08-02 11:30:36.000000,2011-08-19 12:30:11.000000

 Source Data: 10 |3 |Turning Tables |Adele |2011-01-21 08:00:00.000000|2012-08-02 11:30:36.000000| |
 CSV Output: 10,3,Turning Tables,Adele,2011-01-21 08:00:00.000000,2012-08-02 11:30:36.000000,

 Source Data: 10 |4 |Don't You Remember |Adele |2011-01-21 08:00:00.000000|2012-08-02 11:30:36.000000|2011-08-19 12:30:14.000000|
 CSV Output: 10,4,'Don''t You Remember',Adele,2011-01-21 08:00:00.000000,2012-08-02 11:30:36.000000,2011-08-19 12:30:14.000000

 Source Data: 10 |5 |Set Fire to the Rain |Adele |2011-01-21 08:00:00.000000| |2011-08-19 12:30:16.000000|
 CSV Output: 10,5,Set Fire to the Rain,Adele,2011-01-21 08:00:00.000000,,2011-08-19 12:30:16.000000

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 4 READ CARD 2048 131 U 4 C:\nbj\ca\sstest48.ctl
 2 1
 3----7 4

 ** SELCOPY/WNT 3.30.002 2015/10/05 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 4. COMPRESS to CSV Format.

Chapter 4. SELCOPY Operations COMPRESS

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 110

CP
Execute a CP command in a z/VM CMS environment.

Syntax:

 +----------------------------+
 v |
>>--- CP ---+--- | Command Element | ----+---+----------------------+-------->
 | |
 +-- REPLY -- in_area --+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Command Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Description:

Supported only in z/VM CMS environments, the CP operation will pass a command string to the control program (CP) hypervisor
for execution. Selection processing will pause until control is passed back to the SELCOPY program following completion of the
command execution.

All text output from the CP command execution is passed into an area specified by the REPLY parameter. If not specified, this area
defaults to a field at position 1 (the base address) with length equal to the length of the work area buffer or the LRECL value, if no
work area is defined.

The entire command output is terminated with "****" (4 asterisks) within the reply area. If no output is produced by the command,
then these terminating asterisks will replace the first 4 characters of the reply area. Individual lines of text within the command
output passed into the reply area, are terminated with the NL (new line) character (EBCDIC X'15'). e.g. If only one line of text exists
in the output, then a single NL character exists to terminate it.

If the length of the reply area is less than the command output, then the area is filled but the first character is overwritten with the
not symbol, "¬" (EBCDIC X'5F'). If the area length is sufficient to contain all the output text but not the additional "****" (asterisks),
then the asterisk terminator string is not appended to the output text.

If there is no requirement to process the CP command output in the SELCOPY program or the output is to be directed to the user's
terminal, the SYSTEM operation should be used. e.g.

 SYSTEM 'CP QUERY NAMES' * Pass the command to the CMS command processor.

Execution of a CP command will give return code and condition code values. The return code value set by the CP command
execution is assigned to the internal variable RETSYS. If the return code value is 0 (zero) but a non-zero condition code is set, then
the RETSYS value is set to 256. The RETSYS value should be tested following each execution of the CP operation in order to
establish successful execution.

Beware that CP command strings executed using the CP operation, must be supplied in upper case. This is a limitation of the CP
command processor.

The use of the CP operation may have been disabled by the systems programmer using the CBLNAME options variable,
SCPCmds. If so, an attempt to execute a CP operation will return ERROR 115.

Parameters:

Command Element
Specifies an element that constitutes a portion of the command text string.

Chapter 4. SELCOPY Operations CP

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 111

Multiple command string elements are concatenated, in the order in which they are specified, to construct the complete
command string.

Command element values that are of numeric or character numeric data type are automatically converted to decimal
character display format. Use &DCLVar to obtain the unformatted value of a numeric DCLVar.

Each command element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type.

If specified as a type 1 field definition but without a length, the field will have a default length equal to the
prevailing value of variable LRECL. However, if parameter FORMAT is used to convert the field data to printable
hex, specification of a length is mandatory.

Although not necessary, keyword FROM may also be used before a command element specified as a
char_constant or a DCLVar of character data type.

char_constant
A quoted or hexadecimal character constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for data specified by the
command string element.

The source data in a command element of numeric data type is automatically converted to displayable character
format (using a CVxC operation). The length of the command element is determined by fmt_string, not the length
of the command element source.

For command elements of character data type, fmt_string must be a printable hex format string for which a
CVCH (convert character to hex) operation will be performed.

For command elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the command element value is converted from its source numeric data type to
the decimal character display format described by the format string template.

For a command element specified as an @variable, IntVar or DCLVar of numeric or character numeric data type,
a default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the fmt_string specified on
the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for @variable, IntVar and DCLVar representing an integer value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

REPLY in_area
INTO

REPLY specifies in_area which identifies a length and location in storage into which the CP command output will be
returned without translation. in_area may be specified as a declared variable of character data type or a Type 1
(field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If in_area is a field definition, then, for a type 1 field definition, LRECL may be used as a synonym for LENGTH. If no
length is specified, then the default is the length of the work area buffer or the LRECL value, if no work area is defined.

If the length of in_area is greater than the length of the command output plus 4 for the "****" terminator string, then the text
will be left adjusted within in_area and padded with blanks.

The default in_area is a field definition starting at position 1 (the base address) with work area or LRECL length.

Chapter 4. SELCOPY Operations CP

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 112

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

The following sample output is from a SELCOPY program that executes a CP QUERY DASD command and filters the output to
display only CP OWNED volumes.

 SELCOPY/CMS 3.30 at CBL - Bridgend UK (Internal Only) 2016/01/06 17:31 PAGE 1
 --- ---------------- --------

 dcl cpreply char(4096)

 opt datawidth=60

 1. cp 'QUERY DASD' reply cpreply

 if retsys 0
 2. then plog "No output from CP QUERY DASD"
 3. then eoj

 if cpreply = x'15' reverse ptr=@cpend
 4. then @cplen = @cpend-cpreply
 5. else @cpend = cpreply

 6. @cpnext = cpreply

 ==loop==

 if @cpnext >= @cpend
 7. then goto loop_end

 if pos @cpnext, @cpend = x'15' ptr=@lineterm
 8. then do process_line
 9. then @cpnext = @lineterm+1
 10. then goto loop

 ==loop_end==

 11. eoj

 ==process_line==

 if pos @cpnext, @lineterm-1 = "OWNED"
 12. then plog from @cpnext, @lineterm-1

 13. =return=

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0 ------
 0 1 12 DASD 0A80 CP OWNED M01RES 98 80
 0 2 12 DASD 0A82 CP OWNED M01S01 0 80
 0 3 12 DASD 0A83 CP OWNED M01P01 0 80
 0 4 12 DASD 0A86 CP OWNED VMCOM1 11 80
 0 5 12 DASD 0A98 CP OWNED CBLCT1 1 80
 ,....1....,....2....,....3....,....4....,....5....,....6

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 1
 2----3 0
 4 1
 5 0
 6 1

 =loop=
 7 1
 8---10 96

 =loop_end=
 11 1

 =process_line=
 12 5
 13 96 =ret=

 ** SELCOPY/CMS 3.30.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 5. Execute a CP command.

Chapter 4. SELCOPY Operations CP

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 113

CVDATE
Convert a date value from one format to another.

Syntax:

 +-- FROM --+
 | |
>>--- CVDATE ---+--+----------+-- source ---+----- TO --+-- target ---+------>
 | | | |
 +-- NOW --------------------+ +-- DATECB ---+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

CVDATE CVDT

Description:

The CVDATE operation converts a specific or current date value to another format and style.

Dates may be converted to and from a number of different date data types using different styles. (e.g. US, European or ISO
notation.) See description of date data types and also representation of character dates using a FORMAT string containing date
symbols.

Unless NOW is used as the source value specification or DATECB or STYLE=T used as the target, CVDATE does not involve
conversion of a time-of-day value.

Parameters:

FROM source
FR

References the date value to be converted, source may be specified as a date character constant, a declared variable or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

The source specification and value must be of a valid date data type. TYPE and STYLE parameters define the source field
(character or numeric) data type and date format interpretation respectively.

If specified as a field definition without TYPE, then the data type will default to that of target. Otherwise, the default is
TYPE=C (character). If STYLE is omitted, the default is STYLE=I (ISO standard date).

TO target
References the target to which the converted value will be assigned. The target may be a declared variable or a Type 1
(field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition. If target is character data type, then target may
be also specified as a Type 4 (field_pFMT) field definition where the FORMAT string includes date formatting symbols.

The target specification includes TYPE and STYLE parameters, identifying the field data type and date format to which the
source date will be converted.

If specified as a type 1,2 or 3 field definition without TYPE, then the data type will default to that of source. If STYLE is
omitted, the default is the same as source.

NOW
Applicable only as a source value, NOW represents the current date and time. i.e. the date and time at which the CVDATE
operation is executed.

DATECB
The DATECB parameter may be used only as a target value. All date fields in the control block referenced by the DATE
internal field definition, are refreshed with the date supplied by the source value.

If the source value is NOW, all time fields in the control block are also refreshed, otherwise all time fields are set to zero.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

Chapter 4. SELCOPY Operations CVDATE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 114

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of CVDATE for the same source and target values is never necessary and so TIMES should never be
used on CVDATE. See common parameter TIMES for details.

Examples:

 CVDATE NOW to DATECB * Refresh DATE Control Block, as in previous releases.

 CVDATE '2007/02/01' TO 7 AT 131 STYLE=J TYPE=C * -> '2007032'
 CVDATE '2007/02/01' TO 6 AT 131 STYLE=J TYPE=P * -> x'0000 2007 032F'
 * Source still defaults to TYPE=C as it is a date constant.

 MOD POS 1 = '2007/06/30' * Character source.
 CVDATE 10 AT 1 TO 15 AT 131 STYLE=J TYPE=U * Unsigned Packed Decimal target.

 * Above will fail with RC=8 as no TYPE coded for source, so it
 * defaults to the same as the destination.

 CVDATE 10 AT 1 TYPE=C TO 15 AT 131 STYLE=J TYPE=U * Works ok. Source will
 * still default to STYLE=I.

 CVDATE NOW TO PREC+40 FORMAT='d Ddd, Mmm ddth yyyy'
 * Could give: '7 Sun, Jul 1st 2007'

 CVDATE 'June 30th 2007' STYLE=A TO DATECB * Refresh DATE Block, zeroize time fields.

 CVDATE 10 AT 1 TO 141 FORMAT='Day d Ddd Mmm ddth ccyy Dddzzzzzz ddth Mmmzzzzzz yyyy'
 * Could give: 'Day 6 Sat Jun 30th 2007 Saturday 30th June 2007 '

Chapter 4. SELCOPY Operations CVDATE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 115

CVXX
CVxx converts data from one data type to another where the first x represents the source data type and the second x the target
data type. x is a single character symbol representing a data type as follows:

A ASCII F Floating Point (Hex or Binary)
B Binary H Printable Hex
C Character P Packed Decimal
E EBCDIC Z Zoned Decimal

Conversion between ASCII and EBCDIC text is documented under the TRAN operation.
(CVAE and CVEA are synonyms for TRAN EBCDIC and TRAN ASCII respectively.)

Syntax:

 +- FROM --+
 | |
>>--+- CVxx -----+---------+-- source ------- TO --- target -----------+----->
 | |
 | +- FROM --+ +- TO --- target --+ |
 | | | | | |
 +- CVAE --+--+---------+-- source -----+------------------+--------+
 | |
 +- CVEA --+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Combinations of xx are detailed by the following table ("Y" = valid, "." = invalid).

CVxx xB xC xF xH xP xZ
 Bx Y Y . . Y Y
 Cx Y Y Y Y Y Y
 Fx . Y Y . . Y
 Hx . Y
 Px Y Y . . Y Y
 Zx Y Y Y . Y Y

Synonyms:

CVAE CVE

CVBC UNPKB

CVBP CVD

CVCB PACKB

CVCH CVH

CVCP PACK

CVEA CVA

CVPB CVB

CVPC UNPK

Description:

A CVxx operation will interpret the source data as the data type specified by the first x character in the operation keyword, convert
the data to the data type specified by the second x character and assign it to target.

Use of data typed field definitions and declared variables diminish the requirement for CVxx operations since an assignment
statement or MOD operation will perform automatic data type conversion if the source and target data types are different. e.g. the
following operations perform the same action:

 CVBP 4 AT 11 TO 8 AT 21 * 4-byte binary to 8-byte decimal.
 MOD 8 AT 21 TYPE=P = 4 AT 11 TYPE=B

Similarly, use of declared variables, which are always assigned a data type, will be automatically converted by SELCOPY
whenever their use requires it. e.g. In an ADD operation where a binary integer value is added to a decimal fixed point value.

Declared variable value assignments also support conversion between data types not supported by CVxx operations. e.g.
Conversion of floating point to integer binary or packed decimal.

CVxx operations where the source and target data types are the same (i.e. CVBB, CVCC CVFF, CVPP and CVZZ) allow
reformatting of the value without changing the data type. e.g.

Chapter 4. SELCOPY Operations CVXX

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 116

CVCC with FORMAT specified on the target field definition can generate a different displayable character format for the
same character numeric value.

•

CVFF with different TYPE F formats (BIN/HEX) and/or lengths on the source and target specifications, may be used to
convert between the different floating point formats.

•

CVBB, CVPP and CVZZ may be used to convert the source value to target having the same numeric value and data type
but with a different source data field length.

•

Field Lengths

The source value used and target value generated by a CVxx operation are ultimately based on a field in storage, having
location, length and data type attributes.

For any of these fields, the maximum length supported by SELCOPY's data conversion depends on the data type as follows:

Data Type Max Length
Binary 8 Bytes
Character 256 Bytes (1)
Floating Point 8 Bytes (2)
Hexadecimal 512 Bytes (3)
Zoned Decimal 31 Bytes
Packed Decimal 16 Bytes

(1) Maximum of 159 bytes if the source of a CVCH operation.
(2) Although SELCOPY supports floating point fields of any length up to 8 bytes, it is recommended that fields of

length 4 or 8 bytes are used for compatibility with system supported single and double precision fields
respectively.

(3) Hexadecimal fields must be an even number of characters.

The length of a target value field must be sufficient to store the converted value without truncation or loss of numeric precision.
If not, SELCOPY return code 8 is set and the target field updated as follows:

If target is of displayable character or zoned decimal data type, the target field contains "*" (asterisk) characters in
every position.

•

If target is of binary or packed decimal data type, the target value is inserted in the field with truncation of the left most
significant bytes.

•

If target is of floating point or hexadecimal data type, the target value is inserted in the field with truncation of the right
most significant bytes.

•

Parameters:

FROM source
References the value to be converted, source may be specified as a quoted or hex character constant, a declared variable
or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If source is a constant or field definition on a CVFx operation, TYPE F BIN/HEX/NAT may be specified to identify the
format of the floating point value. In all other cases, a TYPE parameter specified on source will be ignored. Instead, the
data in the field will be interpreted as being of the source data type implied by the CVxx operation keyword.

If the format of the source data does not comply with the data type used to interpret the data, then SELCOPY return code
8 is set and the conversion is not attempted.

TO target
References the target to which the converted value will be assigned. The target may be a declared variable or a Type 1
(field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition. If target is displayable character (CVxC) or
hexadecimal (CVCH) data type, then target may be also specified as a Type 4 (field_pFMT) field definition.

If target is a constant or field definition on a CVxF operation, TYPE F BIN/HEX/NAT may be specified to identify the format
of the floating point value. In all other cases, a TYPE parameter specified on target will be ignored. Instead, the data will
be converted to the target data type implied by the CVxx operation keyword.

If the length of the target field is invalid or exceeds the maximum for the target data type, then SELCOPY return code 8 is
set and the conversion fails.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

Chapter 4. SELCOPY Operations CVXX

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 117

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of CVxx for the same source and target values is never necessary and so TIMES should never be
used on CVxx. See common parameter TIMES for details.

CVxB/CVBx - Convert to and from Binary Integer

CVBC, CVBP and CVBZ operations convert a binary integer value to printable character, packed decimal and zoned decimal
formats respectively. CVBB, CVCB, CVPB and CVZB operations convert a numeric or numeric character integer value to
binary integer format.

A binary integer value may be represented by a field of between 1 and 8 bytes in length and is signed unless the source field is
length 1. (i.e. x'FF' is decimal 255, not -1). An 8-byte field may reference a signed binary value between -(2**63) and +(2**63)-1.

When converting to binary integer, if the source field contains invalid data or the length of a target field is not sufficient to
contain the converted value, then SELCOPY return code 8 is set and the target value is unchanged.

CVxC/CVCx - Convert to and from Character

CVCH treats a source value as character data, regardless of its assigned data type, and converts each character to printable
hex. Each pair of hex digits that constitute a byte, are converted to 2 printable characters. Likewise, CVHC will convert printable
hex back to its character format. See "Convert to and from Printable Hex" below for more detail.

CVCB, CVCC, CVCF, CVCP and CVCZ operations convert a numeric character source value to binary integer, displayable
character, floating point, packed decimal and zoned decimal respectively.

If the character source value is non-numeric, it is treated as having a numeric value of 0 (zero).

CVBC, CVCC, CVFC, CVPC and CVZC operations convert a numeric source value to displayable character if the target has a
defined FORMAT string comprising numeric format symbols. The source value data types are binary, character numeric,
floating point, packed decimal or zoned decimal respectively. If no FORMAT string is defined, then the target value will be of
zoned decimal integer data type. i.e. the CVxC operation is identical to CVxZ.

Any CVxC operation that converts a numeric source to displayable character may be unnecessary if either of the following is
true:

The source is a declared variable with a default FORMAT defined on its DECLARE operation.1.

The source variable or field definition is to be used as the source of a MOD, LOG, PLOG, PRINT or WRITE operation,
and FORMAT is included as part of that source specification to define its displayable character interpretation.

2.

In both of these cases, data type conversion is automatically performed by SELCOPY using temporary work fields in internal
storage where necessary. However, if automatic conversion of the same source will be actioned on multiple operations, then
use of a CVxx or MOD operation to convert the data before hand will make the program execution more efficient.

When converting to displayable character, if the source field contains invalid data or the length of a target field is not sufficient to
contain the converted value, then SELCOPY return code 8 is set and the target is filled with "*" (asterisk) characters.

CVxF/CVFx - Convert to and from Floating Point

Floating point values may be of Hexadecimal (HEX) or IEEE-754 binary (BIN) format.

CVFC and CVFZ operations convert a floating point value to printable character and zoned decimal formats respectively. CVCF,
CVFF and CVZF operations may be used to convert a rational numeric or numeric character value to one of the supported
floating point formats.

A floating point value may be represented by a field of between 2 and 8 bytes in length. However, it is recommended that
lengths of 4 and 8 should be used to comply with the system standard short and long forms of floating point values respectively.

When specified as a constant or field definition, the format of a source or target floating point value is determined by a TYPE F
and format (BIN/HEX/NAT) specification. e.g.

 CVCF 20 AT 1 TO 8 AT 101 TYPE=F HEX * Char to Floating Point.
 CVFC 8 AT 101 TYPE=F HEX TO 1 FORMAT='z,zz9.99999-' * Floating Point to Char.
 CVFF 8 AT 101 TYPE=F HEX TO 8 AT 201 TYPE=F BIN * IBM to IEEE format.
 CVFF 4 AT 101 TYPE=F BIN TO 8 AT 201 TYPE=F HEX * IEEE to IBM format.

Unless otherwise specified, the format of a source or target floating point value is determined by the DEFAULTFP environment
option. If this option is unset, the default is NATIVE. i.e. the native floating point format for the local system (HEX for z/OS and
z/VM CMS, BIN for Windows and Unix systems.)

Chapter 4. SELCOPY Operations CVxB/CVBx - Convert to and from Binary Integer

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 118

When converting to floating point, if the length of a target field is not sufficient to contain the converted value, then the
SELCOPY return code is unchanged and the target value is truncated from the right so that low order digits are lost.

For a CVCF operation , a "." (dot/period) in the character source is interpreted as the decimal point and a value of -0 is treated
as +0. Similarly, a "." (dot/period) character in the displayable character numeric FORMAT string identifies the location of the
decimal point in the target of a CVFC operation.

For a CVFC or CVFZ operation, rounding will occur on the fraction portion of the converted rational value if necessary. If
converting from a binary floating point value that represents INFINITY or a NAN (SNAN or QNAN), then the literal "inf" or "nan"
will be right adjusted in the target field, overlaying a formatted 0 (zero) value. Note that sub-normal binary floating point values
are unsupported.

On converting to displayable character (CVFC), a maximum of 10 fraction digits are included in the converted value. No limit is
imposed on the integer portion of the converted value, other than that specified by the FORMAT string.

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/26 14:14 PAGE 1
 --- ---------------- --------

 equ irec 1 * Input record.
 equ chr 13 at irec+000 type=c * Source value 1.
 equ f8h1 irec+017 format='xxxx,xxxx,xxxx,xxxx'
 equ f8b1 irec+041 format='xxxx,xxxx,xxxx,xxxx'
 equ f4b2 irec+065 format='xxxx,xxxx'
 equ f8b2c irec+084 format='ss,sss,ss9.999,999,9'

 equ f8hex1 8 at 201 type=f hex * Field as IBM Base 16, len 8 (long).
 equ f8bin1 8 at 211 type=f bin * Field as IEEE Base 2, len 8 (long).
 equ f4bin2 4 at 221 type=f bin * Field as IEEE Base 2, len 4 (short).

 option worklen=300 datawidth=105

 1. read card into irec fill

 if pos irec = '.'
 or pos irec = 'C'
 or pos irec = '-'
 2. then print from irec len=105 type=s
 3. then goto get

 4. cvcf chr to f8hex1
 5. cvch f8hex1 to f8h1
 6. cvff f8hex1 to f8bin1
 7. cvch f8bin1 to f8b1
 8. cvff f8hex1 to f4bin2
 9. cvch f4bin2 to f4b2
 10. cvfc f8bin1 to f8b2c

 11. print from irec len=105 type=s

 end * f8h1 f8b1 f4b2 f8b2c

+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10....+
Char Source	Src->FltHex(1)	FltHex(1)->FltBin(1)	FltHex(1)->FltBin(2)	FltBin(1)->Char
 10 |X'41A0,0000,0000,0000' |X'4024,0000,0000,0000 '|X'4120,0000' | +10.000,000,0|
 1.2 |X'4113,3333,3333,3333' |X'3FF3,3333,3333,3333 '|X'3F99,9999' | +1.200,000,0|
 -1.2 |X'C113,3333,3333,3333' |X'BFF3,3333,3333,3333 '|X'BF99,9999' | -1.200,000,0|
 240 |X'42F0,0000,0000,0000' |X'406E,0000,0000,0000 '|X'4370,0000' | +240.000,000,0|
 36.584 |X'4224,9581,0624,DD30' |X'4042,4AC0,8312,6E98 '|X'4212,5604' | +36.584,000,0|
 0.0000052 |X'3C57,3DD4,76E5,39AC' |X'3ED5,CF75,1DB9,4E6B '|X'36AE,7BA8' | +0.000,005,2|
 63904.0089 |X'44F9,A002,4745,38F0' |X'40EF,3400,48E8,A71E '|X'4779,A002' | +63,904.008,900,0|
+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10....+

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 11 READ CARD 2048 105 U 11 Z:\cd\sman\l340\SMXCVFF.CTL
 2----3 4
 4---11 7

 ** SELCOPY/WNT 3.30.002 2015/10/05 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 6. CVCF, CVFF, CVFC and CVCH Examples.

CVCH/CVHC - Convert to and from Printable Hex

CVCH converts each byte in the source to displayable hex format. i.e. each pair of hex digits that represent a single character
byte is converted to 2 consecutive, displayable characters in the target value.

The hex digit characters are represented by the code points for characters 0 to F in the local code page. These invariant code
points are [x'F0'-x'F9',x'C1'-x'C6'] in EBCDIC and [x'30'-x'39', x'41'-x'46'] in ASCII. e.g. In z/OS and z/VM CMS, the source value
SEL1, which has EBCDIC code points x'E2C5,D3F1', will convert to displayable hex characters E2C5D3F1.

The CVCH target field supports specification of a FORMAT string comprising printable hex format symbols. e.g.

 CVCH 'abcd' ASCII TO 1 FORMAT=" 'xx,xx xx,xx' = ASCII code. "
 CVCH 'abcd' EBCDIC TO 1 FORMAT=" 'xx,xx xx,xx' = EBCDIC code. "

Unless FORMAT is specified, the length of the CVCH target value is twice the length of the source value.

Chapter 4. SELCOPY Operations CVxF/CVFx - Convert to and from Floating Point

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 119

CVHC converts pairs of hex digits in displayable character format to a single byte hex value. The hex value references a code
point which may be a displayable character in the code page of the local terminal. e.g. In Windows and Linux, the source
displayable character value 414263 will convert to hex digits x'414263' which reference the 3 displayable ASCII code
points for characters ABc.

The length of the CVHC target value is half the number hex digits in the source value. The following conditions apply to CVCH
operations:

Occurrences of "," (comma) and blank characters in the displayable hex character source value are ignored. e.g.
5,30C,4Cbbb43 will convert to x'530C4C43'.

1.

Apart from "," (comma) and blank characters, any displayable character in the source value that is not a valid
hexadecimal digit, will set SELCOPY return code 8 and fill target with "*" (asterisk) characters. Note that hex digit
characters may be represented as upper or lower case printable characters.

2.

If the source value contains an odd number of hex digit characters, then the last hex digit will convert to printable
character "*" (asterisk) in target. e.g. In an ASCII based system 41,42,4 will convert to printable characters AB*.

3.

CVxP/CVPx - Convert to and from Packed Decimal Integer

CVPB, CVPC and CVPZ operations convert a packed decimal integer value to binary integer, printable character and zoned
decimal formats respectively. CVBP, CVCP, CVPP and CVZP operations convert a numeric or numeric character integer value
to packed decimal integer format.

A signed packed decimal integer value may be represented by a field of between 1 and 16 bytes in length allowing values of up
to 31 decimal digits.

When converting to packed decimal, if the length of a target field is not sufficient to contain the converted value, then SELCOPY
return code 8 is set and the target value is truncated from the left so that the high order digits are lost.

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/26 11:23 PAGE 1
 --- ---------------- --------

 1. READ CARD WORKLEN 1000 FILL

 2. CVCP 10 AT 1 TO 4 AT 22 * PACK (4th record is truncated)
 3. CVPB 4 AT 22 TO 3 AT 32 * CVB
 4. CVBP 3 AT 32 TO 4 AT 40 * CVD
 5. CVPB 4 AT 22 TO 2 AT 52 * CVB (1st 4 records are truncated)
 6. CVPZ 4 AT 22 TO 7 AT 58 *

 7. CVCH 4 AT 22 TO 22 * Convert to hex notation.
 8. CVCH 3 AT 32 TO 32 * Note that destination overwrites source.
 9. CVCH 4 AT 40 TO 40 *
 10. CVCH 2 AT 52 TO 52 *

 11. PRINT 'Char(10) Comments Pack(4) Bin(4) Pack(4) Bin(2) Zoned' STOPAFT=1
 12. PRINT '--------- -------- -------- ------ -------- ------ -----' STOPAFT=1
 13. PRINT LENGTH 80 * Print the card area.

 END

 INPUT SEL SEL 1 RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 9 0 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 1 1 11 Char(10) Comments Pack(4) Bin(4) Pack(4) Bin(2) Zoned 9
 1 1 12 --------- -------- -------- ------ -------- ------ ----- 9
 1 1 13 10,460.98 1046098C 0FF652 1046098C F652 1046098 9
 2 2 13 4.240,22 0424022C 067856 0424022C 7856 0424022 8
 3 3 13 3 186 40 0318640C 04DCB0 0318640C DCB0 0318640 8
 4 4 13 123456789 Truncate 3456789C 34BF15 3456789C BF15 3456789 19
 5 5 13 -176 Negative 0000176D FFFF50 0000176D FF50 000017O 19
 6 6 13 - 2 20 Negative 0000220D FFFF24 0000220D FF24 000022} 19
 7 7 13 25 CR Negative 0000025D FFFFE7 0000025D FFE7 000002N 19
 8 8 13 20 f 3gk Negative 0000203D FFFF35 0000203D FF35 000020L 19
 9 9 13 cr 20 Positive 0000020C 000014 0000020C 0014 0000020 19
 10 10 13 2 CR 0 Positive 0000020C 000014 0000020C 0014 0000020 19
 11 11 13 2 #(=0 Positive 0000020C 000014 0000020C 0014 0000020 19
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....0

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 11 READ CARD 2048 19 U 11 Z:\cd\sman\l340\SMXCVPB.CTL
 2 11 (***01 RETCD=8***)
 3----4 11
 5 11 (***04 RETCD=8***)
 6---10 11
 11---12 1
 13 11

 WARNING (SEL----5) 8 = RETURN CODE FROM SELCOPY

 ** SELCOPY/WNT 3.30.002 2015/10/05 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 7. CVCP, CVPB, CVBP, CVPZ and CVCH Examples.

Chapter 4. SELCOPY Operations CVCH/CVHC - Convert to and from Printable Hex

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 120

CVxZ/CVZx - Convert to and from Zoned Decimal Integer

CVZB, CVZC, CVZF and CVZP operations convert a zoned decimal integer value to binary integer, printable character, floating
point and packed decimal formats respectively. CVBZ, CVCZ, CVFZ, CVPZ and CVZZ operations convert a numeric or numeric
character value to packed decimal integer format. Note that a CVxC operation, where no FORMAT string is specified for target,
is equivalent to a CVxZ operation.

A signed zoned decimal integer value may be represented by a field of between 1 and 31 bytes in length allowing values of up
to 31 decimal digits.

When converting to zoned decimal, if the source field contains invalid data or the length of a target field is not sufficient to
contain the converted value, then SELCOPY return code 8 is set and the target is filled with "*" (asterisk) characters.

Chapter 4. SELCOPY Operations CVxZ/CVZx - Convert to and from Zoned Decimal Integer

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 121

DECLARE
Declare a variable and optionally assign a non-default initial value.

Syntax:

>>-- DECLARE --- name --- | Data Type | --------+------------------+--------->
 | |
 +- POS -+- expr ---+
 +- DCLvar -+

 >---+------------------------------------+--+-------------------------+----->
 | | | |
 +- INI -- value --+------------------+ +- FORMAT -- fmt_string --+
 | |
 +- FILL -+- char --+
 (1) +- PAD --+

 >----+-----------+-+-----------+--><
 | | | |
 +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Data Type:

 |---+- CHAR -----+---------------------------------+--------------+---------|
 | | | |
 | +- (n_bytes) -------------------+ |
 | |
 +- VARCHAR --+---------------------------------+--------------+
 | | | |
 | +- (n_bytes) -------------------+ |
 | |
 +- CHARV ----+---------------------------------+--------------+
 | | | |
 | +- (n_bytes) -------------------+ |
 | |
 +- CHARZ ----+---------------------------------+--------------+
 | | | |
 | +- (n_bytes) -------------------+ |
 | |
 +- BIN ------+---------------------------------+--------------+
 | | | |
 | +- (n_bytes) -------------------+ |
 | |
 +- DEC ------+---------------------------------+--------------+
 | | | |
 | +- (precision -+-----------+-) -+ |
 | | | |
 | +- , scale -+ |
 | |
 | +- NAT --+ |
 | | | |
 +- FLOAT ----+---------------------------------+--+--------+--+
 | | | | |
 | +- (n_bytes) -------------------+ +- BIN --+
 | | | |
 +- DOUBLE -------------------------------------+ +- HEX --+

Syntax Notes:

(1) Parameter keyword FILL is applicable to fixed length character data types only.

Synonyms:

DECLARE DCL

Description:

The DECLARE operation defines a declared variable which may be referenced, in place of its assigned value, throughout the
program's control statements. It is classed as one of the control statement analysis operations.

Chapter 4. SELCOPY Operations DECLARE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 122

The value assigned to the declared variable is held in a source field defined either within its own area of dynamic storage or as an
overlay of a predefined area of storage (e.g. the user work area). Like any field definition, the source field has position, length and
data type.

The contents of the source field belonging to a declared variable of any data type may be referenced by prefixing the variable name
(name) with "&" (ampersand). i.e. &name is the unformatted (character) value of the declared variable with length equal to the
length of the source field.

However, &name may also be specified with an offset (arithmetic expression) to identify the start position of a field definition
relative to the declared variable's source field. In this case, &name references a location in storage only and the length of the
variable source field is no longer implied. e.g.

 DECLARE COUNT DEC(7) INI=256 FMT='Z,ZZ9'

 PRINT COUNT * Prints: ' 256'
 PRINT &COUNT FMT='XXXX,' * Prints: '0000,256C'
 PRINT FROM &COUNT+1 LENGTH=3 FMT='XX,' * Prints: '00,25,6C'

If required, the source field may overlay an area of storage within the source field of another declared variable or within the
allocated work area (see parameter POS). However, if all data is processed as declared variable values without overlaying work
area storage, allocation of a work area is unnecessary.

The value assigned to a declared variable will be stored in the source field in the defined data type format. This value may be
updated by assignment statements and operations executed during selection time processing.

Unless the INI parameter is specified on the DECLARE operation, the variable is assigned an initial value of blank for a character
data type, or 0 (zero) for a numeric data type.

Parameters:

name
The programmer defined name used to reference the declared variable within control statements.

Data Type
The data type assigned to the variable source field.

CHAr (n_bytes)
C

A character fixed length value of length specified by the parenthesised integer value, (n_bytes).

Assignment of a value that has a length less than n_bytes will be padded with blank characters.

If (n_bytes) is omitted then the default length is determined as follows:

If parameter INI is specified, default is the length of the initial value.1.
If parameter FORMAT is specified, default is the width of fmt_string.2.
Default is 1.3.

VARCHAR (n_bytes)
Vchar

A character variable length value of maximum data length specified by the parenthesised integer value,
(n_bytes). The length of the character data is maintained in a 2-byte binary length field prefix to the character
data. Any reference to a VARCHAR variable does not include this length field.

Following assignment of a value, any unused characters following the value text in the source field are
unchanged. The 2-byte length field prefix is updated with the length of the assigned value.

If (n_bytes) is omitted, the default length is 124.

CHARV (n_bytes)
CHV
CHARVARYING

A character varying length value of maximum data length specified by the parenthesised integer value, (n_bytes).

Following assignment of a value, any unused characters following the value text in the source field are padded
with blanks up to length n_bytes. The 2-byte length field prefix is updated with the length of the assigned value.

If (n_bytes) is omitted, the default length is 124.

Chapter 4. SELCOPY Operations DECLARE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 123

CHARZ (n_bytes)
CHZ
CHAZ
NTS
Zchar
CSTRING
CSTR

A character variable null terminated value with a maximum data length of 1 less than the parenthesised integer
value, (n_bytes). i.e. the n_bytes length includes the null terminator character (x'00').

Following assignment of a value, the null terminator is appended to the value in the source field and any unused
characters following the null terminator are unchanged. If INI is not specified, a null value is assigned.

If (n_bytes) is omitted, the default length is 126.

BIN (n_bytes)
B

A binary integer value represented by a field of length between 1 and 8 bytes as specified by the parenthesised
integer value, (n_bytes).

If (n_bytes) is omitted, the default is 4.

DEC (precision,scale)
D

A decimal integer value with a maximum precision of 31 as specified by the parenthesised integer value,
(precision). If a second integer value, scale, is specified within the parentheses following precision, the variable
represents a decimal fixed point value.

A scale has a minimum and default value of 0 and maximum value of precision.

If (precision,scale) is omitted, the default is (5,0).

FLOAT (n_bytes)
FLT
FP
F

A floating point value represented by a field of length between 1 and 8 bytes as specified by the parenthesised
integer value, (n_bytes).

The format of the floating point value is determined by one of the following sub-parameters.

BIN (BFP) IEEE-754 Base 2 binary floating point.
HEX (HFP) IBM Base 16 hexadecimal floating point.
NAT (NATIVE) Floating point format native to the local machine architecture.

If (n_bytes) is omitted, the default is 4. The default floating point format is that defined by environment option
DEFAULTFP.

DOUBLE
DBL

A double precision floating point value. DOUBLE is a synonym for FLOAT(8).

FORMAT fmt_string
FMAT
FMT

Specifies a numeric format string that defines a numeric value interpretation for character variables and a character
display format for numeric variables.

Character Data Types:
FORMAT is not applicable to variables of data type VCHAR, CHARV or CHARZ. However, for a variable of fixed
character data type (CHAR), fmt_string defines the value as numeric character data.

The numeric character value has a precision defined by the sum of all digit, zero suppression and floating sign
control symbols within fmt_string. Furthermore, if a decimal point control symbol exists, the numeric value also
has a scale which indicates a fraction portion for the value.

The fmt_string width must match the length of the variable definition, otherwise ERROR 205 is returned. If,
however, both the INI parameter and n_bytes value have not been specified, the default length of the variable is
defined as the width of fmt_string.

Numeric Data Types:
For numeric data types, fmt_string defines the default character format applied when the variable is used in an
operation to reference a character source value. (e.g. on a PRINT, WRITE or MOD operation).

Chapter 4. SELCOPY Operations DECLARE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 124

If fmt_string does not include digit control characters that represent all fraction digits of a DEC or FLOAT value,
then rounding will occur to the lowest decimal place represented by fmt_string.

If no FORMAT parameter is specified for a numeric variable, the following defaults are used:

fmt_string Numeric Data Type
'SS,SSS,SSS,SS9' Variables supporting integer values: BIN and DEC(p).
'SS,SSS,SSS,SS9.9999' Variables supporting rational values: DEC(p,s), FLOAT, DOUBLE.

INI value
INIT

Specifies value, an initial value to which the variable will be assigned.

For character data types, value must be specified as a quoted or hex character constant with or without ASCII/EBCDIC
encoding keywords. The default initial value for character variables is blank with blank padding for fixed length character
data type.

For numeric data types, value is specified as a numeric or numeric character constant. The default initial value for numeric
variables is 0 (zero).

FILL char
PAD

Applicable only to variables of fixed length character data type, FILL defines the pad character (char) to be used when the
length of the value specified by INI is less than the declared variable length.

The pad char may be specified as a quoted or hex character constant of length 1.

The default is the blank character.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

POS expr | DCLvar
P

Specifies a location in storage at which the variable's source field is defined.

Dynamic storage is not allocated for the variable's source field as is default. Instead the POS location references an area
of dynamic storage that has already been allocated for data input (input buffer or work area) or another declared variable.

Using this method, a variable may be declared so that its value is updated as the area containing its source field is
updated. e.g. A variable with a source field defined within the area of storage into which records are read.

If the POS location is specified as an arithmetic expression, expr, or a declared variable, DCLvar, of numeric or numeric
character data type, then the value represents a position from the base storage address.

If the POS location is a declared variable, DCLvar, of character data type or an offset from that DCLvar (e.g. DCLvar-2),
then it represents a position from the dynamic storage location at which the DCLvar source field is defined.

Examples:

 DCL irec CHA (100) * Field in dynamic storage. (No POS.)
 DCL rec2 cha (50) * Field in dynamic storage. (No POS.)
 DCL ABC Char (10) POS 1001 * Field at POS 1001 in WORKLEN area.
 DCL totc CHAR FMAT='zz,zz9.99' * Field length omitted.

 dcl tot1 DEC * Default: (5,0) needing 3 bytes.
 dcl tot2 dec (5) * Same as (5,0) needing 3 bytes.
 dcl tot3 dec (9,3) * 5 bytes, with 3 places of decimal.
 dcl tot4 d (7,2) * 4 bytes, with 2 places of decimal.
 dcl tot5 d (31, 6) * 16 bytes (max) with 6 places of decimal.

 dcl totb1 bin * Default: (4) needing 4 bytes.
 dcl totb2 bin (6) * 6-byte binary field.
 dcl totb3 bin (8) * 8-byte (max) binary field.

 dcl totf1 float * Default: (4) needing 4 bytes.
 dcl totf2 flt (4) * Same as default FLOAT.
 dcl totf3 double * Default: (8) needing 8 bytes.
 dcl totf4 float (8) * Same as default DOUBLE.
 dcl totf5 double(4) * Same as default FLOAT.

 dcl fld1 DEC (19,6) * Field in dynamic storage. (10 bytes.)
 DCL fld2 CHA (90) * Field in dynamic storage.
 dcl irec char (100) pos=fld1 * Field overlaying fld1 and fld2.

Chapter 4. SELCOPY Operations DECLARE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 125

The following control statements demonstrate use of the above declared variables in expressions, in assignment statements and as
the source or target of an operation.

 read abcfil into irec * ERROR 546 if input rec exceeds size of DCL var, irec.
 * Prev rec residue not cleared unless FILL coded.
 irec = 'ABC' * Pos 4 up to end of irec will be blank padded.
 irec+20 = 'ABC' * Pos 1 to 20 of irec will be unchanged.
 * Pos 21 to 23 of irec will be set to 'ABC'.
 * Pos 24 up to end of irec will be padded with
 * the FILL char, which by default is blank.

 rec2 = irec * Contents of irec will be copied to irec, truncated to
 * fit rec2, with no error given.
 irec = rec2 * Contents of rec2 will be copied to rec2 and the
 * remainder of irec padded with the FILL char.

 if irec = rec2 * The shorter field is padded with the FILL char.
 then tot5 = totf4 * Arithmetic assignment follows normal conversion
 * rules. RC=8 is possible if too large for destination.

 if tot5 = totf4 * Arith comparison follows normal conversion rules.
 then @xyz = irec * Sets @xyz to point at the 1st byte of irec.
 then @xyz = irec+20 * Sets @xyz to point at pos 21 of irec.

 @abc = tot1 * Sets @abc to the VALUE held in the arithmetic
 * field, tot1. It does NOT point to it.
 @def = &tot1 * Sets @def to point to the source field of tot1.

 add tot1 to totb1 into totf5 * Sets totf5 to the value tot1 + totb1.
 totf5 = tot1 + totb1 * Does the same thing.
 add tot1 to totb1 into @tot * Sets @tot to the value tot1 + totb1.
 @tot = tot1 + totb1 * Does the same thing.
 * RC=8 is possible if too large for an @ ptr value
 * which is held as a 4 byte binary number.

 if irec = 'x' ptr=@x * Scans irec for 'x' and sets the pointer @x to
 * the 1st 'x' found. If no 'x' found, @x is set to NULL.
 * Not suitable for arithmetic DCL vars, but if really necessary, use POS=refname on a DECLARE
 * operation for a CHA var overlaying the same storage, or use &DCLvar to refer to its source field.

Chapter 4. SELCOPY Operations DECLARE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 126

DELETE
Delete a record or table row read from an input data object source.

Syntax:

 +- FILE -+
 | |
>>-- DELETE ---+---+--------+-- fname ------------------------------------+-->
 | |
 +-- fileid --------+
 | |
 | |
 | +--- FILE ---- DEFAULTF --+ |
 | | | |
 +-+-------------------------+---+- DSN ---- fileid ------+-+
 | | | |
 | +- FILE -+ | +- TABLE -- table_name --+
 | | | |
 +-+--------+-- fname -----+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

DELETE DEL DLET

Description:

Delete of current input record is supported for z/OS VSAM and z/VM CMS VSAM data sets with organisation KSDS or RRDS,
ODBC input tables and Micro Focus relative and indexed files.

For Micro Focus files and VSAM data sets, input parameter UPD must have been specified for the data object in order that it is
opened for update. If not, ERROR 26 will be returned indicating an input/output conflict on the same file name. UPD may be
specified on the READ or OPEN operation.

Before a record or table row can be deleted, a successful READ operation must first be executed in order to establish an input
position within the file or table. The DELETE operation will delete the record or table row which was last read from the specified
input object. The deleted record or table row may have been read into any position of a defined work area or a declared character
variable.

Any attempt to delete a record or table row following a failed READ for the input object will return an error and then terminate the
SELCOPY run.

Following execution of DELETE, sequential processing of the input object will continue at the next record or table row following the
deleted record or row.

UPDATE operations, DELETE operations and, for VSAM and Micro Focus input only, INSERT operations may exist for the same
data object within a SELCOPY program.

DELETE is not supported for input read via a CAT sub-operation.

ODBC Table Delete

DELETE performs the positioned form of an SQL DELETE statement on the current row and can only delete rows belonging to
the first (or only) source table referenced by the SQL query FROM clause. The searched form of SQL DELETE may be actioned
using the ODBC operation.

 READ EMP SQL='SELECT WORKDEPT FROM DSN8910.EMP'

 IF WORKDEPT = 'E11'
 THEN DELETE EMP * Delete when WORKDEPT='E11'

Chapter 4. SELCOPY Operations DELETE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 127

Parameters:

fileid
For file object delete where no specific fname has been defined on the READ operation, fileid may be used to identify the
same file referenced on READ. fileid is a fileid clause specifying the name by which the input file is known to the local
system.

If fname is specified and is already associated with a fileid, then re-specification of fileid on the DELETE operation is
unnecessary.

If not specified as the DSN parameter value, then specification of FILE is invalid and the associated fname is derived from
fileid as described by fileid for the READ operation.

fileid may be specified as an unquoted literal, a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If specified as a variable or field definition, fielid must be an argument to parameter DSN. Also, fileid specified on the
READ operation for the input file, must also be a variable or field definition (i.e. a dynamic value).

DSN fileid
Specifies the name of the input file. See fileid for details.

If no fname is specified on a DELETE operation which uses DSN, then an fname of DEFAULTF is used by default.

FILE fname
F

Identifies the file name assigned to the input data object from which a record or row will be deleted.

fname must match the specified (or derived) file name on the READ operation for the object from which records will be
deleted. It may only be specified as an unquoted literal.

The fname value may be specified with or without the FILE parameter keyword.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TABLE table_name
TAB

For ODBC table object delete where no specific fname has been defined on the READ operation, TABLE table_name may
be used to identify the same base table referenced by the READ TABLE parameter.

If fname is specified and is already associated with a table_name, then re-specification of table_name on the DELETE
operation is unnecessary.

If no fname is specified on a DELETE operation which uses TABLE, then an fname of DEFAULTF is used by default.

The table_name value may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If table_name is specified as a variable or field definition, then table_name specified on the READ operation for the same
input table, must also be a variable or field definition (i.e. a dynamic value).

TIMES int
Although supported as a parameter on DELETE, TIMES must never be used since a second attempt to delete the same
record or table row will always fail, resulting in ERR538. See common parameter TIMES for details.

Chapter 4. SELCOPY Operations DELETE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 128

DIVIDE
Performs an arithmetic division of one, signed numeric source value by another. The resultant quotient value, and optionally the
remainder value, are assigned to target variables or stored in target fields.

Syntax:

 (2)
 +-- INTO source_1 --+
 (1) (2) | |
>>-- DIVIDE ---+-- source_1 --- BY ---- source_2 ---+-------------------+-+-->
 | | | |
 | +-- INTO target_1 --+ |
 | (3) |
 | (2) |
 +-- expr ------- BY ---- source_2 ------ INTO target_1 ----+
 (3)

 >---+--------------------+-->
 | |
 +-- REM target_2 ----+
 (3)

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) source_1 must be of numeric or character numeric data type and may be specified as a declared variable or as
a field definition of type 2 (field_p1p2) or type 3 (field_nATp).
If INTO target is specified, source_1 may also be specified as a constant value or an arithmetic
expression (expr).

(2) source_2 must be of numeric or character numeric data type and may be specified as a constant, an arithmetic
expression (expr), a declared variable or as a field definition of type 2 (field_p1p2) or type 3
(field_nATp).

(3) target_1
target_2

may be specified as a declared variable or as a field definition of type 2 (field_p1p2), type 3
(field_nATp) or type 4 (field_pFMT).

Synonyms:

DIVIDE DIV

Description:

Variables and field definitions that constitute the source values and target of the DIV operation may be of different numeric or
character numeric data types.

When the source and target values are of different data types and/or if an arithmetic expression or constant value is specified as a
source field, then values are converted to a common numeric data type prior to performing the division. The selected common data
type will have a precision and scale which is sufficient to manage the maximum precision and scale of the resultant value.

Any rational number having a fraction value, will be stored internally as a double precision (8-byte) floating point number.
Therefore, all fields in the operation will be converted to double precision floating point data type and then floating point arithmetic
used. If this is the case, use of the REM parameter to specify the target of a remainder value is invalid and will return ERROR 192.

If a target or source value is expressed as a field definition without a TYPE parameter, the default data type attributed to that field
will be the same as the first field definition within the command syntax to have TYPE specified. If no such field definition exists, the
default data type is packed decimal integer (TYPE=P). e.g.

 DIV 4 AT 1 TYPE=C BY 4 AT 6 TYPE=B INTO 4 AT 11 * Default TYPE=C
 DIV 4 AT 1 TYPE=B BY 4 AT 6 TYPE=C INTO 4 AT 11 * Default TYPE=B
 DIV 4 AT 1 BY 4 AT 6 INTO 4 AT 11 TYPE=C * Default TYPE=C
 DIV 4 AT 1 BY 4 AT 6 INTO 4 AT 11 * Default TYPE=P

If the division involves rational numbers, rounding will occur as required on the fractional part of the quotient value based on the
number of fractional digits (scale) of the target_1 definition. e.g. If the target variable or field has no scale, the quotient value will be
rounded to the nearest integer value by adding 0.5 and dropping the fractional portion.

Chapter 4. SELCOPY Operations DIVIDE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 129

Parameters:

source_1
Represents a rational numeric value (dividend) to be divided.

If no target is specified, then source_1 is also the target of the operation to which the resultant value (quotient) will be
assigned. If this is the case, source_1 must be a declared variable or a field definition.

BY source_2
Represents a rational numeric value (divisor) by which the value specified by source_1 will be divided.

expr
Represents a numeric or character numeric constant, or an arithmetic expression to be used as the dividend value.

Note that the divisor (source_2) may also be specified in this way. The distinction is made for expr and source_1 because
source_1 must also be a valid target if INTO is not specified. Therefore, if expr is used, INTO target_1 is mandatory.

INTO target_1
Identifies the declared variable or field definition that is the target of the operation and to which the resultant value
(quotient) is assigned. If the first source value is expr, then a target_1 is mandatory.

If required, data conversion and decimal rounding will be performed on the resultant value before it is assigned to
target_1.

Default is source_1.

REM target_2
Valid only if source_1, source_2 and target_1 are defined with data types that can only represent integer values. REM
target_2 identifies the declared variable or field definition that is the target for the remainder value.

The remainder is the integer value remaining following a divide operation performed on integer values.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

 DECLARE FVAL FLOAT BIN * Floating Point.
 DECLARE BVAL BIN * Binary integer.
 DECLARE PVAL DEC(6) * Decimal No scale.

 EQU OREC 1001 * Output record area.

 OPTION WORKLEN 2000 * Work area buffer.

 @METRES = 3 AT 1 TYPE=P * Assign @variable value.

 DIVIDE 20 BY 6 INTO FVAL
 DIVIDE 20 BY 6 INTO BVAL REM PVAL
 DIVIDE 4 AT 11 TYPE=B BY 8 AT 23 TYPE=P INTO PVAL REM 10 AT 81 TYPE=Z
 DIVIDE @METRES BY 1000 INTO 2 AT 53 TYPE=P
 DIVIDE 16.431 BY 20 INTO 8 AT 61 TYPE=F BIN
 DIVIDE FVAL BY 8 AT 61 TYPE=F INTO OREC+11 FMT='S,SS9.99'

Return Codes:

0 Successful completion.

8 One of the following conditions has occurred:

A divide by zero has occurred.1.

The precision of target is not sufficient to contain the resultant value. Truncation has occurred with the loss of
significant digits.

2.

The first byte of a source or target field definition is within the work area but the last byte is located beyond the
end of the work area buffer. The length of the field is reduced so that the last byte of the field is the last byte of
the work area buffer.

3.

At least one source value is treated as being of packed decimal data type but the source data is invalid packed
decimal data.

4.

Chapter 4. SELCOPY Operations DIVIDE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 130

DO
Break from the standard, selection time processing sequence of control statement execution to execute a sub-routine.

Syntax:

 +------------------------------+
 v |
>>--- DO ------- label ------+------------------------------+---------------->
 | |
 +-- | Parameter Element | ----+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Parameter Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- constant ------------+
 | |
 +--------- expr ----------------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Synonyms:

DO GOSUB PERFORM

Description:

Execution of a DO operation will execute the sub-routine referenced by a named label that exists within the control statement input
stream.

Control is passed to the first executable statement following label where selection time processing continues. The sub-routine
processing ends when a RETURN operation is executed, at which time processing returns to the next executable statement
following the initiating DO operation.

A sub-routine may itself execute a DO operation to execute another sub-routine, or to recursively execute the same sub-routine
currently being processed.

Note that selection processing must not drop into a sub-routine. To avoid this possibility, it is recommended that sub-routines
should be positioned after all the main program statements in the control statement input stream and that a GOTO operation (GET,
EOJ or label) be included before the first sub-routine label. The GOTO operation used should either end selection processing or
pass it to a control statement at the start, or within, the main processing loop.

SELCOPY sub-routines are not private procedures and so all variable and field definitions are exposed to the routine. Any changes
made to variable and field definition values (including internal variable RETCODE) persist when control is passed back to the
calling routine or main processing loop.

However, character values may be passed to a sub-routine as parameters. The values, identified on the DO operation as
parameter element specifications, are assigned to parameter names which are local to the sub-routine. These parameter names
are identifiers which follow the sub-routine label itself, and are assigned values in the order in which they are specified on the DO
operation. Where a statement contains a sub-routine label followed by parameter names, the label name must be suffixed with ":"
(colon).

The number of parameters passed on a DO operation need not match the number of parameters names specified following the
sub-routine label. If the number of parameter values exceeds the number of parameter names, then the excess values are ignored.
However, reference within the sub-routine statements to a parameter name which was not been assigned a value will use "*?*"
(asterisk, question mark, asterisk) as the missing parameter value.

Chapter 4. SELCOPY Operations DO

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 131

If a parameter value is of numeric data type, then it will be automatically converted to its displayable character format before being
assigned to a parameter name.

Parameters:

label
Specifies the statement containing the programmer defined label name, label, denoting the start of a sub-routine.

Parameter Element
Identifies a single parameter value to be passed to the sub-routine.

Parameter values are assigned to parameter names in the order in which they are specified.

Before being assigned to the sub-routine parameter names, parameter element values that are of numeric or character
numeric data type are automatically converted to decimal character display format. Use &DCLVar to obtain the
unformatted value of a numeric DCLVar.

Each parameter element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type.

For type 1 and 2 field definitions, the POS keyword is mandatory to distinguish the expr argument that follows as
a field position as opposed to a parameter element arithmetic expression.

constant
A numeric constant or a quoted or hexadecimal character constant.

expr
An arithmetic expression representing a numeric value.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for value specified by the
parameter element.

The source data in a parameter element of numeric data type is automatically converted to displayable character
format (using a CVxC operation) before it is assigned to a parameter name.

For parameter elements of character data type, fmt_string must be a printable hex format string for which a
CVCH (convert character to hex) operation will be performed.

For parameter elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the parameter element value is converted from its source numeric data type to
the decimal character display format described by the format string template.

For a parameter element specified as a numeric constant, @variable, IntVar or DCLVar of numeric or character
numeric data type, a default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the
fmt_string specified on the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for a constant, @variable, IntVar and DCLVar representing an integer

value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

Chapter 4. SELCOPY Operations DO

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 132

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

Example 1.

The following example executes the same sub-routine, OUTRTN, to print parameter values. The first execution passes numeric
values expressed as @variables (@A and @C) and an arithmetic expression (@B+@C). The second execution passes
character values expressed as character declared variables.

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2016/02/03 16:01 PAGE 1
 --- ---------------- --------

 DECLARE C1 CHA INI='Field-1'
 DECLARE C2 CHA INI='Field-2'

 1. @A=1
 2. @B=2
 3. @C=3
 * <---------------- TEXT -------------> <-- P2 -> <--- P3 ---> <-- P4 ->
 4. DO OUTRTN "@A FMT=99 @B+@C FMT=99 @C FMT=99 " @A FMT=99 @B+@C FMT=99 @C FMT=99
 5. DO OUTRTN "C1 'and' C2 " C1 ' and ' C2
 6. EOJ

 =OUTRTN:= TEXT P2 P3 P4 P5

 7. SPACE 1
 8. PRINT "--- DO OUTRTN --- " TEXT
 9. PRINT P2 ' & ' P3 ' & ' P4
 10. PRINT P2 P3 P4 P5 * Gives RC=8 due to 5th parameter not provided by caller.
 11. =RET=

 INPUT SEL SEL 1 RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 9 0 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 0 1 8 --- DO OUTRTN --- @A FMT=99 @B+@C FMT=99 @C FMT=99 80
 0 1 9 01 & 05 & 03 80
 0 1 10 010503*?* 80

 0 2 8 --- DO OUTRTN --- C1 'and' C2 80
 0 2 9 Field-1 & and & Field-2 80
 0 2 10 Field-1 and Field-2*?* 80
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....0

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1----6 1

 =OUTRTN=
 7----9 2
 10 2 (***02 RETCD=8***)
 11 2 =ret=

 WARNING (SEL---10) 8 = RETURN CODE FROM SELCOPY

 ** SELCOPY/WNT 3.30.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 8. DO operation with parameters.

Chapter 4. SELCOPY Operations DO

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 133

DUMMY
Execute a null operation.

Syntax:

>>--- DUMMY --->

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

DUMMY WRITE FILE=DUMMY

Description:

Executes a null operation which does nothing other than increment the selection count for the operation.

DUMMY is equivalent to WRITE DUMMY and so is treated as an output data object for which no OPEN or I/O access method
service operations are actually performed.

Since end-of-job processing is automatically triggered when STOPAFT thresholds have been reached for all output (PRINT, LOG,
WRITE) operations, use of DUMMY (or WRITE DUMMY) without STOPAFT may be used to force SELCOPY processing to
continue until end-of-file is reached for the prime input object. e.g.

 READ INFILE
 PRINT TYPE=M STOPAFT=17
 DUMMY * Prevent EOJ after 17th input record.

See also READ FILE=DUMMY for input of a dummy data object.

Parameters:

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Chapter 4. SELCOPY Operations DUMMY

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 134

END
Mark the end of control statements and the start of CARD record input.

Syntax:

>>--- END ---><

Synonyms:

END E

Description:

The END operation indicates the end of SELCOPY control statement input and is classed as one of the control statement analysis
operations.

END is only required if READ FILE=CARD has been specified to input data records from the same source as the control
statements. In this case, the input data records immediately follow the END operation. e.g.

 READ CARD
 PLOG
 END
 Data records for CARD input go here.
 /*

If READ CARD has not been specified, the END operation may be used instead of composite symbol "/*" (slash asterisk) in column
1, to indicate end of control statement input. (i.e. No further attempt is made to input control records). This is particularly useful
when executing SELCOPY from a POSIX command shell where "/*" may be interpreted as being a generic file path.

Chapter 4. SELCOPY Operations END

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 135

EQU
Define an equated symbol for use in subsequent control statements.

Syntax:

>>-- EQU ---- symbol ----- value -->

 >----+-----------+-+-----------+--><
 | | | |
 +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

The EQU operation defines an equated symbol which will be substituted with its equated value in all control statements that follow.
It is classed as one of the control statement analysis operations.

Equated symbols are especially useful when referencing numeric constants and field positions in a work area, particularly if the
constant or field is referenced on many control statements. Providing a meaningful name (symbol) for a numeric value can assist in
a programmer's interpretation of the operations on which they are used. Similarly, any changes to a value that is referenced in
multiple operations may easily be applied if it is equated to symbol, simply by updating the EQU operation.

Equated symbols are substituted in all control statements that follow the EQU operation, including statements that contain other
EQU statements. Therefore, an equated value may itself contain an equated symbol and so nesting of equated values is possible.
e.g.

 EQU XVAL 12 * 12
 EQU YVAL XVAL+100 * 12+100
 EQU ZVAL YVAL-005 * 12+100-005

Although not encouraged, symbol may contain arithmetic operator character "+" (plus) and "-" (minus). Because equated symbols
are substituted during control statement analysis, if symbol contains one of these characters, its substitution would take
precedence over its interpretation as an arithmetic expression. e.g.

 EQU ID 8
 EQU UNIT 15
 EQU UNIT-ID 276

 PRINT FROM POS UNIT-ID LENGTH 20 * Position 276, not position 7 (15-8)

Note that no substitution will occur for symbol if it is referenced within a quoted character constant.

Beware when choosing a symbol name that it may be one of SELCOPY's keyword identifiers and, if so, may cause conflict in
analysis processing of control statements that follow. e.g. POS, FROM, LENGTH are all valid symbol names that would likely
cause a problem.

Parameters:

symbol
The programmer defined name by which the equated symbol is identified.

value
The equated value may be specified as one or more character constants which each represent a SELCOPY identifier,
constant or operator statement element.

The value specification ends at the end of the control statement on which the EQU operation is situated or before an "*"
(asterisk) symbol that identifies the start of comment text.

Note that, any unquoted literals that occur within value, will be upper cased. Otherwise, occurrences of symbol will be
substituted with value, exactly as it is specified on the EQU operation. e.g. Apostrophes (') and quotation marks (") used to
delimit quoted character constants are preserved.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

Example:

Although a better method may be to use declared variables, the following example illustrates equated symbol nesting as a method
of defining a work area of length determined by the size of the consecutive field definitions used in the program control statements.

Chapter 4. SELCOPY Operations EQU

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 136

 EQU INREC 1 * Input Record position.
 EQU INRECL 1000 * Input record (maximum anticipated length.)

 EQU OUTREC INREC+INRECL * Output Record position.
 EQU OUTRECL 100 * Output Record (maximum anticipated length.)

 EQU TOTB OUTREC+OUTRECL * Total Bytes count (P.D. field.)
 EQU TOTBL 16 * Total Bytes count (P.D. field length.)

 EQU TOTR TOTB+TOTBL * Total Records count (P.D. field.)
 EQU TOTRL 8 * Total Records count (P.D. field length.)

 EQU CURL TOTR+TOTRL * Current Record length (P.D. field.)
 EQU CURLL TOTRL * Current Record length (P.D. field length.)

 EQU AVRL CURL+CURLL * Average Record length (P.D. field.)
 EQU AVRLL TOTRL * Average Record length (P.D. field length.)

 OPTION WORKLEN AVRL+AVRLL-1 * Work Area length = sum of all field lengths.

Chapter 4. SELCOPY Operations EQU

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 137

EXPAND
Expand a line of data which has previously been compressed using SELCOPY's proprietary compression algorithms. Alternatively,
expand text which is in a comma separated variable (CSV) format so that values occupy consecutive fixed length fields.

Syntax:

 (1) +- FROM -+
 | |
>>-- EXPAND ----+--------+- source ---- TO -- target ---+-----------------+-->
 (2) (3) | |
 +- | CSV Parms | -+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

CSV Parms:

 +--------+ +- DLM "," --+ +- FILL " "---+
 v | | | | |
 |--- FLEN -+- int --+----+------------+----+-------------+------------------>
 | | | |
 +- DLM char -+ +- FILL char -+

 >-----+---------------------+---|
 | |
 | +- '"' ---+ |
 | | | |
 +- ENC --+---------+--+
 | | | |
 | +- char --+ |
 | |
 | |
 | +- "\" ---+ |
 | | | |
 +- ESC --+---------+--+
 | |
 +- char --+

Syntax Notes:

(1) FROM is mandatory if source is a field definition of type 1 (field_pLENn) but with keyword POS omitted.
(2) source references an area of storage specified by a character constant, a declared variable of character data

type, or as a field definition of type 1 (field_pLENn), type 2 (field_p1p2) or type 3 (field_nATp).
(3) target references an area of storage specified by a declared variable of character data type, or a field

definition of type 1 (field_pLENn), type 2 (field_p1p2) or type 3 (field_nATp).

Description:

EXPAND and COMPRESS operate on single lines of data (usually file object input records) to perform one of the following tasks:

Compress or expand data using SELCOPY's proprietary compression algorithms.1.
Compress or expand values in comma separated format (CSV).2.

For both types of data expansion, following execution of the EXPAND operation the value assigned to internal variable LRECL is
updated to be the length of the expanded data. Furthermore, the storage containing the source data must not overlap the target
storage area.

Specification of a work area is mandatory for EXPAND.

Compressed Data Processing

Where parameter FLEN is not specified, EXPAND will attempt to restore data that has been compressed using SELCOPY's
proprietary data compression algorithms. See COMPRESS.

Depending on the structure of the data, it is possible that the expanded data is shorter than the compressed source.

Chapter 4. SELCOPY Operations EXPAND

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 138

CSV Data Processing

Data within database tables and spreadsheets can usually be unloaded into a comma separated variable (CSV) format, where
each column value is separated from the following column value by a delimiter character, usually a "," (comma). In most
processing environments, unloaded database data is the most common source of CSV data.

To assist in processing CSV format data, EXPAND may be used to expand each of the comma separated values into
consecutive fixed length areas of a field definition or character declared variable. Once expanded, values may more easily be
searched, updated and/or reformatted before, once again, being compressed into the original, or an alternate, CSV format using
COMPRESS.

Parameter FLEN must be specified in order to invoke CSV data expansion instead of SELCOPY's general data decompression
utility. The FLEN parameter values identify the fixed lengths of each storage area into which the data values will be expanded.
When expansion occurs, each data value is copied to the next fixed length data area within the target area. If necessary, values
will be padded to the length of the data area using the pad character, as specified by the FILL parameter.

By default, the EXPAND operation only searches for the delimiter characters, defined by parameter DLM. Leading and trailing
blanks are preserved for each CSV value and special characters, such as escape characters, apostrophes or quotation marks,
are treated as data and copied to the target area as part of the value. e.g. "ABC,DEF" will be interpreted as two fields:
 "ABC and DEF"

Parameter ESC should be used if the escape character exists and is not to be treated as part of the string value. Alternatively,
ENC should be used if leading and trailing enclosing characters are to be stripped from CSV values when copied to the target
field.

Parameters:

FROM source
Specifies a character value or area of storage containing the source data to be expanded. source may be specified as a
character constant, a declared variable of character data type, or as a field definition of type 1 (field_pLENn), type 2
(field_p1p2) or type 3 (field_nATp).

The complete length of character data represented by source will be expanded. If specified as a type 1 field definition but
without a length, the field will have a default length equal to the prevailing value of variable LRECL.

Keyword FROM need not be specified if source is specified as a character constant or a declared variable.

TO target
Specifies the variable or area of storage into which the CSV values are to be expanded. target may be specified as a
declared variable of character data type, or a field definition of type 1 (field_pLENn), type 2 (field_p1p2) or type 3
(field_nATp).

If FLEN is specified to indicate CSV data expansion and the length of target is greater than the sum of the specified FLEN
values, then the last FLEN value will be used to define fields in the surplus target data. (See FLEN below.)

If specified as a type 1 field definition but without a length, the field will have a default length equal to that of source.

FLEN int ...
Identifies the EXPAND operation as being for CSV data expansion. FLEN specifies an integer constant value, int, or a
sequence of integer constants that correspond, one-to-one with the lengths of each consecutive, fixed length field in target
area.

If the sum of the integer values specified by FLEN is lower than the length of the target area specification, then the last
FLEN value in the sequence is used to identify the lengths of all subsequent target fields. e.g. FLEN 30 20 indicates
that the target area that will contain the first expanded value is of length 30 and target areas to contain all expanded
values thereafter are length 20.

If the more FLEN values are specified than there are CSV source values, then the extraneous values are ignored.

DLM char
DELIM

Specifies the delimiter character char, a character constant of length 1, used to separate each value in the CSV source.
This character is used by EXPAND to identify each source value.

Default is "," (comma).

FILL char
PAD

Specifies the fill character char, a character constant of length 1, used to pad values copied to the fixed length target
fields.

Default is "b" (blank).

ENC char
Specifies the enclosure character char, a character constant of length 1, to be stripped if it exists as the first and last
non-blank character of a value.

Applicable only to values enclosed by this character, the leading and trailing enclosure character and any leading and
trailing blanks will be stripped. Also, if 2 consecutive enclosure characters occur in the source value, then the first

Chapter 4. SELCOPY Operations EXPAND

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 139

occurrence will be removed. e.g. If the enclosure character is '"' (quotation mark), a value "XYZ""ABC""" is expanded
as XYZ"ABC" in the target field.

Parameters ENC and ESC are mutually exclusive. If ENC is specified without char, '"' (quotation mark) is the default.

ESC char
Specifies the escape character char, a character constant of length 1, to be extracted from values in the CSV source data
when it is copied to the target field area.

If 2 consecutive escape characters occur in the source value, then only the first occurrence will be removed. e.g. If the
escape character is "\" (backslash), a value \"AB\\\\C\&DEF\" is expanded as "AB\\C&DEF" in the target field.

Parameters ENC and ESC are mutually exclusive. If ESC is specified without char, '\' (backslash) is the default.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of EXPAND for the same source data is unnecessary and so TIMES should never be used on
EXPAND. See common parameter TIMES for details.

CSV Expansion Errors:

If an error is encountered during the EXPAND operation, then SELCOPY return code 8 is set, processing continues and an error
message is returned in the SELCOPY list output.

Each expansion related error message includes the following element:

Field#nn,Len=nn The sequence number and length of the target field in error.
DataLen=nn The length of the value.
TotDestLen=nn The length of the target area.

Possible errors relating to expansion of data to CSV format are as follow:

EXPND Error 01: Field#nn,Len=nn DataLen=nn TotDestLen=nnn Field data too long.
One or more of the values in the source CSV data exceeds the fixed length (FLEN value) of the target field into which it is
to be expanded. Each target field for which this error is detected is filled with "*" (asterisk) characters. The target field
referenced in the message text is the first one for which this error was detected.

EXPND Error 06: Field#nn,Len=nn DataLen=nn TotDestLen=nnn Destn area overflow.
An attempt was made to expand a value into a target field but that field would fall outside the target area length
(TotDestLen). The target area will contain as many expanded values as will fit. The target field referenced in the message
text is the first one for which this error was detected.

EXPND Error 07: Field#nn,Len=nn DataLen=nn TotDestLen=nnn Fields > Destn area.
The sum of all target field lengths provided by the FLEN parameter exceed the length of the target area. No expansion
takes place and the value for LRECL is set to 0 (zero).

EXPND Error 09: Field#nn,Len=nn DataLen=nn TotDestLen=nnn Source/Destn overlap.
The source and target areas overlap. No expansion takes place and the value for LRECL is set to 0 (zero).

Examples:

The following example expands values in CSV format input records into fixed length fields.

Chapter 4. SELCOPY Operations EXPAND

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 140

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/12 10:09 PAGE 1
 --- ---------------- --------

 dcl scale130 cha(130)
 dcl csvvar vcha(100)
 dcl expvar cha(130)

 option worklen=9999 pagedepth=999 datawidth=130

 1. scale130 = pos scale

 2. print type=s ' ' from scale130 stopaft=1

 3. read card into csvvar
 4. print type=s 'Source CSV Data: ' from csvvar

 5. expand csvvar to expvar flen=10,5,10,10,30,20,15,10 enc
 6. print type=s 'Expanded Data: ' from expvar
 7. space 1

 end

 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....0....,....1....,....2....,....3
 Source CSV Data: 50310201,Mrs,Gaye,Smith,"""Westminster House""",Wexham,CANTERBURY,Kent,CT3 1QP,UK
 Expanded Data: 50310201 Mrs Gaye Smith "Westminster House" Wexham CANTERBURY Kent CT3 1QP UK

 Source CSV Data: 50310202,Mr,Edward,McArthur,13 Oaklands Drive,,AYLESFORD,Kent,ME12 4LB,UK
 Expanded Data: 50310202 Mr Edward McArthur 13 Oaklands Drive AYLESFORD Kent ME12 4LB UK

 Source CSV Data: 50310203,Ms,Lisa,Wilmot,11 St. Mary's Road,,CANTERBURY,Kent,CT1 6HT,UK
 Expanded Data: 50310203 Ms Lisa Wilmot 11 St. Mary's Road CANTERBURY Kent CT1 6HT UK

 Source CSV Data: 50310204,Mrs,Glynis,O'Connor,"Seafront Cottage, Whittle",Fishmonk,SEVENOAKS,Kent,TN12 4DS,UK
 Expanded Data: 50310204 Mrs Glynis O'Connor Seafront Cottage, Whittle Fishmonk SEVENOAKS Kent TN12 4DS UK

 Source CSV Data: 50310205,Mrs,Patricia,Jones,Harley House,St. Joseph's Way,FOLKESTONE,Kent,CT5 3BK,UK
 Expanded Data: 50310205 Mrs Patricia Jones Harley House St. Joseph's Way FOLKESTONE Kent CT5 3BK UK

 Source CSV Data: 50310206,Mrs,Jennifer,Jales,1 Marble Cottages,Herne Road,MARGATE,Kent,CT14 4GM,UK
 Expanded Data: 50310206 Mrs Jennifer Jales 1 Marble Cottages Herne Road MARGATE Kent CT14 4GM UK

 Source CSV Data: 50310207,Mrs,Elizabeth,Evans,4 Matchlock Lane,,CANTERBURY,Kent,,UK
 Expanded Data: 50310207 Mrs Elizabeth Evans 4 Matchlock Lane CANTERBURY Kent UK

 Source CSV Data: 50310208,Mr,Chris,Ainsley,18 Crofters Court,,SEVENOAKS,Kent,TN22 1PT,UK
 Expanded Data: 50310208 Mr Chris Ainsley 18 Crofters Court SEVENOAKS Kent TN22 1PT UK

 Source CSV Data: 50310209,Mrs,Adriana,Kay-Jones,12 Ashway,Mayhill,TUNBRIDGE WELLS,,TN8 9JK,UK
 Expanded Data: 50310209 Mrs Adriana Kay-Jones 12 Ashway Mayhill TUNBRIDGE WELLS TN8 9JK UK

 Source CSV Data: 50310211,Mrs,Susan,Bond,Bobble House,123 West Lane,,Kent,CT11 8XC,UK
 Expanded Data: 50310211 Mrs Susan Bond Bobble House 123 West Lane Kent CT11 8XC UK

 Source CSV Data: 50310212,Mrs,Jessie,Cross,66/1 The Downs,,Folkestone,Kent,CT10 9ND,UK
 Expanded Data: 50310212 Mrs Jessie Cross 66/1 The Downs Folkestone Kent CT10 9ND UK

 Source CSV Data: 50310213,Miss,Brenda,Gribble,246 Topitt Road,,WHITSTABLE,Kent,CT3 4TX,UK
 Expanded Data: 50310213 Miss Brenda Gribble 246 Topitt Road WHITSTABLE Kent CT3 4TX UK

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 13
 2 1
 3 12 READ CARD 2048 92 U 12 C:\nbj\ca\sstest49.ctl
 4----7 12

 ** SELCOPY/WNT 3.30.002 2015/10/05 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 9. EXPAND CSV Format Data.

Chapter 4. SELCOPY Operations EXPAND

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 141

FLAG
Flag an end condition for READ DIR or READ DIRDATA input.

Syntax:

>>--- FLAG -----+-- EODIR ------------+----+-------------------------+------->
 | | | |
 | | | +- FILE -+ |
 +-- EODSK ------------+ | | | |
 | | +--+--------+--- fname ---+
 +-- EOMBR ------------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

Applicable only to DIR or DIRDATA input which reads multiple directory entries or file objects with fileids that match a specified
fileid mask.

FLAG sets an end of object condition for the input file, Unix-like directory or disk volume currently being processed by SELCOPY. If
the prime input is not for DIR/DIRDATA or a number of READ DIR/DIRDATA operations exist for different fileid masks, then fname
must be specified on FLAG to identify the input object stream to which the operation applies.

Parameters:

EODIR
EOD

Applicable only to z/VM CMS SFS, Windows and Unix-like fileid masks, FLAG EODIR forces end of current input
directory. All remaining entries, other than sub-directory entries, which belong to the current input directory will be
bypassed. The contents of any sub-directory entries will be processed.

EODSK
EODISK

For z/VM CMS minidisk, z/VM CMS SFS and Windows fileid masks, FLAG EODISK forces end of current input disk
volume. No further directory or file entries will be read from the current disk and, if specified, processing will begin for the
disk volume identified by the next drive letter.

For Unix-like fileids, FLAG EODISK forces end of current input directory. Unlike FLAG EODIR, all remaining directory
entries, including sub-directory entries, will be bypassed.

EOMBR
EOM
EOMEMb

For any DIRDATA input, FLAG EOMBR forces early end of input file (or z/OS library member) data. The next record read
will be the directory entry belonging to the next file/member to be processed.

 READ USER123.JCL(*) DIRDATA * Input z/OS JCL library.

 IF DIR * If directory entry.
 THEN SPACE 1 * Skip a line in SYSPRINT.
 THEN PRINT 'Next Member: ' FROM 8 AT 1 * Print the member name.
 THEN GOTO GET * Get next input record. (DATA)

 IF POS ANY = 'NOTIFY=' * If JOB statement with NOTIFY.
 THEN PRINT * Print the record.
 THEN FLAG EOMBR * Flag end of data.
 THEN GOTO GET * Get next input record. (DIR)

FILE fname
F

Specifies the up to 8 character file name assigned to the fileid mask used for DIR or DIRDATA input and to which the
flagged condition will apply.

If fname is omitted, the prime input data object is assumed by default.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

Chapter 4. SELCOPY Operations FLAG

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 142

TIMES int
Repeated execution of FLAG to set the same condition on the same input file object is unnecessary and so TIMES should
never be used on FLAG. See common parameter TIMES for details.

Example:

The following example selects for processing all files with a file extension of "txt" that occur within the first 4 levels of directory
nesting on disk volumes referenced by disk letters C, E and G respectively.

The directory entry belonging to the selected files will be printed and only the first 3 records belonging to each selected file will be
read and printed. On reading a directory entry for a selected file which contains "max", then further input of files entries in the same
directory are suppressed. Similarly, on reading a directory entry for a selected file which contains "tar", then further input of entries
on the same disk volume are suppressed.

 READ 'CEG:/*.txt' DIRDATA SUB=4 * Windows or z/VM CMS SFS fileid.

 IF DATA * If current record is member data.
 AND INCOUNT > 2
 THEN FLAG EOMBR * Force end of member for data records.

 IF DIR * If current record is a directory entry.
 THEN IF POS ANY = 'max'
 THEN FLAG EODIR * Force end of current directory.

 IF DIR * If current record is a directory entry.
 THEN IF POS ANY = 'tar'
 THEN FLAG EODISK * Force end of current disk.

 PRINT * Print the current record, which may be a DIR entry,
 * or 1 of the 1st 3 DATA records of each file chosen.

Chapter 4. SELCOPY Operations FLAG

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 143

FLUSH
Flush the output buffer belonging to a file object so that the contents are physically written to the output file and buffer reset to an
empty state.

Syntax:

 +-- FILE --+
 | |
>>-- FLUSH ---+----------+--- fname --->

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

By default, SELCOPY does not physically write the block of records stored in an output buffer to the output device until that buffer
is full. i.e. On execution of a WRITE operation where the length of the output record exceeds the length remaining in the buffer.

If a buffer is not empty, execution of the FLUSH operation forces the physical write to occur before the buffer is full. Following the
physical write, the file object's output buffer is reset to empty so that the next record written to the file is located at the start of the
buffer.

See also parameter NEWBLK on the WRITE operation which performs the same functionality immediately prior to writing a record
to the output buffer.

For RECFM VB output, a short block of records will be written to the output device with a block descriptor word (BDW) reflecting
the length of the block.

FLUSH is particularly useful when output is to a Windows, Unix or Linux tape device, or a z/OS or z/VM CMS ddname that has
been assigned to a tape unit.

A tape device driver will automatically insert an inter-record gap (IRG) following each block of data physically written to the tape
device. Therefore, FLUSH may be used to control the size of the data block and the occurrence of an IRG.

Parameters:

FILE fname
F

Identifies the programmer defined file name assigned to the output file object.

The value fname must be specified as an unquoted literal.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Although supported as a parameter on FLUSH, TIMES is meaningless since flushing an empty buffer has no effect. See
common parameter TIMES for details.

Examples:

The following working example reads an IBM emulated tape (AWSTAPE) format file and writes output to a real tape device. FLUSH
is used to write inter-record gaps following each block.

Chapter 4. SELCOPY Operations FLUSH

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 144

 ** c:\nbj\ca\aws2tape.ctl *** L=002 --- 2007/04/12 17:32:36 (L05)
 *
 * Title: AWSTAPE_CTL.TXT
 * Type: SELCOPY control statement input.
 *
 * Execution: At a system command prompt or from within a script..
 *
 * selcopy -ctl awstape.ctl
 *
 * Description: Convert AWSTAPE format file to real TAPE.
 *
 * Notes: 1. UNIX tape output device *must* be non-rewinding.
 * 2. Tape device driver automatically writes a Load point
 * tape mark.
 * 3. Tape device driver automatically writes a Tape Mark
 * when output file is closed.
 * 4. The tape is not rewound at end of job.
 *

 ** Level History **
 *
 *
 * 2007/04/12 L=002 -nbj- New Bus-Tech flags & records spanning mult AWSTAPE blocks.
 * 2007/03/07 L=001 -nbj- written.

 ** EQUate values ***
 * equ AWSTAPE "/home/nbj/test.aws" * Input AWS tape fileid.
 * equ OUTTAPE "/dev/ntibm0" * Output tape device.

 equ AWSTAPE "%1" * Input AWS tape fileid.
 equ OUTTAPE "%2" * Output tape device.

 equ inb 1 * Input AWSTAPE block header (6 bytes)
 equ obc 0 * Offset - Current block length (Little Endian)
 equ obp 2 * Offset - Previous block length (Little Endian)
 equ of1 4 * Offset - Flag byte 1.
 equ f1s x'80' * Flag - Start of Record.
 equ f1m x'40' * Flag - Tape Mark.
 equ f1e x'20' * Flag - End of Record.
 equ f1g x'10' * Flag - Segmented Record.
 equ of2 5 * Offset - Flag byte 2.
 equ f2c x'80' * Flag - Bus-Tech Compression (zlib 1.1.14).
 equ f2h x'40' * Flag - Bus-Tech Hardware Compression.
 equ f2e x'40' * Flag - Bus-Tech Encrypted block.
 equ inbL 6 * Input AWSTAPE block header length.

 equ otd inb+inbL * Output data area.
 equ otdL 65535 * Output data area length. (Max Block size.)

 equ ben otd+otdL * Big Endian value Binary value.
 equ benL 2 * Big Endian value Binary value length.

 equ mtc ben+benL * Tape Write Tape Mark "mt eof 1" command.
 equ mtcL 100 * Tape Write Tape Mark "mt eof 1" command length.

 opt worklen=mtc+mtcL * User work area.

 ** Establish Tape mt Command and Output data pointer. *** (1st time only)
 pos mtc+0 = "mt -f eof 1" stopaft 1
 pos mtc+6 = OUTTAPE stopaft 1
 @out = otd stopaft 1

 ** Read Block Headers **
 lrecl = inbL * Length of Block Header.

 read inaws dsn=AWSTAPE into inb eol=no blksize=otdL
 * Read Block Header from input file.
 * Blksize=otdL defines an input buffer
 * big enough to contain maximum size block.
 * EOL=NO => Ignore CRLF/LF characters.

 ** Process Tape Mark (TM) Block Header **
 if pos inb+of1 ones f1m * TM Block Header ?
 then if pos inb+obp = x'0000' * No previous data block? (Previous Length=0)
 then system from mtc, mtc+mtcL-1 * Write a TM.
 then goto get * Get next Block Header.
 else close otape * Close the tape output. (Automatically writes a TM.)
 then goto get * Get next Block Header.

 ** Process Data Block Header **
 move 1 at inb+obc+0 to ben+1 * Convert to 2-byte Big Endian..
 move 1 at inb+obc+1 to ben+0 * ..for SELCOPY.
 lrecl = benL at ben type=b * Length of Data in current block.

 ** Verify Output data area will not been exceeded by next READ. **
 if @out+lrecl > otd+otdL-1
 then plog "Error.. Output Area too small. (Cannot contain next input data block.)"
 then plog " Increase EQUated value for 'otdL', rewind the tape and re-run."
 then cancel * Cancel the job run.

 ** Process Data Block and Set output record length. **
 read inaws into @out eol=no * Read data block into output pointer position.

 if @out = otd * If new output record.
 then @outL = lrecl * Initialise output record length.
 else @outL = lrecl+@outL * Increment the output record length.

 ** Write output record to tape only if end of data record. (Records may span data blocks.) **
 if pos inb+of1 ones f1e * End of Record ?
 then lrecl = @outL * Output record length.
 then wr otape dsn=OUTTAPE from otd eol=no blksize=otdL * Write to output buffer.
 then flush otape * Write contents of output buffer to file.
 then @out = otd * Reset the output pointer.
 else @out = lrecl+@out * Increment the output pointer.

 /* ** End of SELCOPY statements. **

Figure 10. FLUSH Tape Output.

Chapter 4. SELCOPY Operations FLUSH

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 145

GENERATE
Generate a random value and assign it to a variable or field definition.

Syntax:

 (1)
 +- RANGE -- 1 ----- 26 --+
 | |
>>--- GENERATE --- target --+------------------------+--+------------------+->
 | | | |
 +- RANGE -- start - end -+ +- BASE char_base -+
 | |
 +- RANGE -- char_range --+
 (2)

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) RANGE 1 26 is default only if target is of character data type. Otherwise, specification of a RANGE start and
end value is mandatory.

(2) RANGE char_range is applicable only if target is of character data type.

Synonyms:

GENERATE GEN RANDOM

Description:

The GENERATE operation will generate a random value of data type equal to that of the target variable or field definition. This
value will be one of a specific range of possible values.

Parameters:

target
References the variable or field to which the generated value will be assigned. target may be specified as a declared
variable or as a Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

The data type of target dictates the format of the randomly generated value. If target is specified as a field definition
without TYPE, then a default data type of packed decimal (TYPE=P) is assumed.

BASE char_base
Optionally specifies char_base a character constant on which the generated character or numeric value is based.
Although this constant may be of any length, only the first 4 characters are used as the base value.

If a BASE char_base is omitted, the algorithm used to generate the value is based upon the number of times the individual
GENERATE operation has been executed and the current 4-byte time of day clock value. Since the time clock value is
dynamic, a different set of random values will be generated each time the program is executed.

If BASE char_base is specified, the first 4 characters of char_base is used in place of the 4-byte time of day clock value.
Since char_base is a constant, the same set of random values will be generated each time the program is executed.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

RANGE start end | char_range
Specifies a range of values from which the generated value is established.

The start and end values may each be specified as a positive or negative integer numeric constant or @variable
reference. The start value must be less than or equal to the end value so that they define the limits of an ascending
sequence of integers.

If target is of numeric data type, the RANGE parameter with start and end arguments is mandatory. The generated value
assigned to target will be an integer that falls within this inclusive range.

Chapter 4. SELCOPY Operations GENERATE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 146

If target is of character data type, then RANGE may be specified with start and end integer value limits or as char_range,
a character constant.

A RANGE specification of start, end for a character data type identifies an inclusive range of values where each integer
value represents a character value as follows:

1 A 8 H 15 O 22 V 29 2 36 9 43 / 50 @
2 B 9 I 16 P 23 W 30 3 37 b 44 * 51 #
3 C 10 J 17 Q 24 X 31 4 38 + 45 (52 $
4 D 11 K 18 R 25 Y 32 5 39 - 46)
5 E 12 L 19 S 26 Z 33 6 40 = 47 _
6 F 13 M 20 T 27 0 34 7 41 , 48 !
7 G 14 N 21 U 28 1 35 8 42 . 49 :

Specification of start and end limits that include values less than 1 or greater than 52 will generate a character value
containing potentially unprintable characters.

A RANGE specification of char_range identifies specific array of characters from which the character value is generated.
Using char_range, it is possible to bias selection of an individual character within the generated value by including it more
than once in the char_range specification. e.g. RANGE=XXA would give a 2:3 chance that "X" occurs in any individual
location within the generated character value.

The RANGE specification may be omitted if target is of character data type. If this is the case the default is RANGE 1 26
indicating all upper case alpha characters belonging to the ISO Basic Latin alphabet (A to Z).

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Example:

The following sample output is from a SELCOPY program that uses the GENERATE operation to generate sample zoned, packed
decimal, binary and character data.

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2016/01/08 17:42 PAGE 1
 --- ---------------- --------

 OPTION DATAWIDTH=40 PRTSUM=1

 1. PRINT 'ZONED PACKED CHAR BINARY'
 2. PRINT '----- ------ ---- ------'

 3. @hi = 20 * @Variable value.

 ==LOOP==

 4. GEN 4 AT 1 TYPE=Z RANGE -20 @hi BASE KGHJ
 5. GEN 3 AT 11 TYPE=P RANGE 51 99 BASE BB
 6. GENERATE 9 AT 21 TYPE=C RANGE 2 8 BASE 7777 * B to H.
 7. GEN 4 AT 31 TYPE=B RANGE -16 16 BASE KTWX

 ** Now expand the data by converting to displayable hex for readability.
 8. CVCH 4 FR 31 TO 31 * Convert Char to Hex.
 9. CVCH 3 FR 11 TO 11

 10. PRINT LEN=40
 11. GOTO LOOP STOPAFT 5 * Loop back 5 times only.

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0 ------
 0 1 1 ZONED PACKED CHAR BINARY 80
 0 1 2 ----- ------ ---- ------ 80
 0 1 10 0000 00096C GHHFDBEFG FFFFFFF9 80
 0 2 10 0004 00087C BCHBDFCCD 00000006 80
 0 3 10 001N 00078C EEEHHGHGH 00000002 80
 0 4 10 0010 00079C FFDGFEGGE 0000000F 80
 0 5 10 001J 00092C GBGBHCEGG FFFFFFF8 80
 0 6 10 001P 00098C HDFGCBECB FFFFFFFB 80
 ,....1....,....2....,....3....,....4

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1----3 1
 4---10 6
 11 5

 ** SELCOPY/WNT 3.30.002 2015/10/05 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 11. GENERATE operation.

Chapter 4. SELCOPY Operations GENERATE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 147

GOTO
Break from the standard, selection time processing sequence of control statement execution.

Syntax:

 (1)
>>--- GOTO ------+-- label -------+-->
 | |
 +-- CANCEL ------+
 | |
 +-- EOJ ---------+
 | |
 +-- GET ---------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) Operation keyword GOTO is optional for parameter EOJ and also for parameter CANCEL, if specified on a THEN
or ELSE sub-operation of IF/AND/OR.

Synonyms:

GOTO GO TO

Description:

By default, selection time processing executes the next statement in the sequence of control statements for which a selection
identifier has been assigned or on which a condition operation (IF/AND/OR) is specified. If no executable statements follow and
there exists a prime input data object which is read sequentially, then processing returns to the first executable statement.
Otherwise, selection processing ends and end of job processing begins.

Where a prime input exists, the processing loop continues until an end-of-file record is read from the prime input object or a GOTO
EOJ operation is executed.

This natural sequence may be overridden using a GOTO operation. GOTO supports parameters to continue selection processing
at a statement containing a named label, to end the SELCOPY program normally or abnormally, or to return processing to the first
executable statement.

Parameters:

label
Specifies the statement containing the programmer defined label name, label, at which selection processing will continue.

A GOTO label operation is usually conditional (specified on a THEN or ELSE sub-operation) based on preceding
IF/AND/OR operation. It is particularly useful and necessary when a processing loop is required. e.g. The following will set
an @variable (@val4) to the position of the 4th comma separated variable (CSV) value in a field.

 @count = 0 * Initialise hit count.
 @val4 = 101 * Field start position.

==LOOP== * Find the 4th comma separated variable value in a field.
 IF POS @val4, 101+LRECL-1 = ',' PTR @val4 * Find the next comma.
 THEN @val4 = @val4+1 * Character following.
 THEN @count = @count+1 * Increment the hit count.
 ELSE GOTO CANCEL * Unexpected so abnormal end-of-job.

 IF @count < 3 * If the 1st or 2nd comma.
 THEN GOTO LABEL * Repeat the loop.
 LOOP_END

Chapter 4. SELCOPY Operations GOTO

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 148

CANCEL
Forces immediate, abnormal end of selection time processing.

GOTO CANCEL performs the same operation as GOTO EOJ except that SELCOPY return code 44 is set and the input
buffer for the last data object read is printed in TYPE D (Dump) format as an aid in debugging.

If specified as a conditional operation on a THEN or ELSE, the GOTO operation keyword may be omitted. e.g.

 IF RC = 8 !THEN CANCEL

EOJ
Forces immediate, normal end of selection time processing and the start of normal SELCOPY end of job (EOJ)
processing.

Specification of GOTO EOJ is recommended following an IF/AND/OR EOF condition on the prime input object.

If GOTO EOJ is executed before end-of-file has been reached on an input data object, the *EOF*NOT*REACHED*
message is displayed for each READ operation on that object in the summary block of the SELCOPY list output. However,
since SELCOPY has not triggered EOJ processing, return code 4 (indicating end-of-file not reached) is not set.

Similarly, execution of GOTO EOJ will suppress SELCOPY's normal check for all output selection totals being 0 (zero)
and so return code 16 will not be set.

WRITE FILE=STOP is a synonym for GOTO EOJ. Similarly, the GOTO operation keyword may be omitted. e.g. The
following will read and print just the first record of a file.

 READ INFILE DSN='/home/user123/test_file'
 PRINT
 EOJ

GET
Skips processing of executable statements that follow the GOTO GET operation and returns processing to the first
executable statement.

GOTO GET is mandatory on the last statement of the main processing loop if sub-routines (called by a DO operation)
follow. This is to prevent main processing from dropping into the sub-routine control statements. e.g.

 DO ROUTINE STOPAFT=1
 PRINT '** Main processing **'
 GOTO GET

==ROUTINE==
 PRINT '** Sub-routine processing **'
 RETURN

GG is a synonym for GOTO GET.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of GOTO is unnecessary and so TIMES should never be used on a GOTO operation. See common
parameter TIMES for details.

Chapter 4. SELCOPY Operations GOTO

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 149

IF/AND/OR
Test one or more conditions in order to execute one or more conditional operations.

Syntax:

 +---+
 v |
>>-- IF --+-------+- condition --+---+->
 | | | |
 +- NOT -+ +-+-----+-+- AND -+-+-------+- condition -+
 | | | | | |
 +- ! -+ +- OR --+ +- NOT -+
 (1)

 >----+-----------+-+-----------+-->
 | | | |
 +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

 +---------------------------------+
 v |
 >--+-+-----+- THEN -+- operation --+-+-------------------------------------->
 | | | |
 +- ! -+ +- assignment -+
 (1)

 >--+--+-><
 | |
 +-+-----+- ELSE -+- operation --+--+-----------------------------------+
 | | | | | |
 +- ! -+ +- assignment -+ | +-------------------------------+ |
 (1) | v | |
 +-+-----+- THEN -+- operation --+-+-+
 | | | |
 +- ! -+ +- assignment -+
 (1)

Syntax Notes:

(1) ! Keywords AND, OR, THEN and ELSE are sub-operations and so must be the first identifier specified on a
SELCOPY statement. Specification of the defined statement separator character (default "!") before a
sub-operation keyword is required only if it is not the first identifier. i.e. the IF operation keyword and/or
sub-operation keywords exist on the same input control file record.

Synonyms:

IF I

AND A

OR O

THEN T

ELSE EL L

THEN IF TI THENIF

ELSE IF LI ELSEIF

Description:

The IF operation allows conditional execution of assignment statements, selection time operations and nested IF operations.

The condition specified by logical operation, IF, together with logical sub-operations, AND and OR, define a logical expression
which returns a true or false result.

A conditional sub-operation, THEN, must be specified for each operation or assignment to be executed in the event of a true result.
Similarly, the operation or assignment specified on the ELSE sub-operation and each subsequent THEN sub-operation, is executed
if the result is false.

The first, non-conditional operation or assignment statement that follows the last THEN or ELSE sub-operation, denotes the end of
conditional operations associated with the IF operation

Processing of conditions separated by the logical AND sub-operation takes higher precedence to conditions separated by the
logical OR sub-operation. Therefore, the following returns a true result if either condition_1 and condition_2 are both true, or
condition_3 and condition_4 are both true.

 IF condition_1 !AND condition_2 !OR condition_3 !AND condition_4

Chapter 4. SELCOPY Operations IF/AND/OR

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 150

Parameters:

NOT
Reverses the result received by condition so that a true result becomes false and a false result becomes true.

condition
Represents one or more tests which determine the result (true or false) of the IF, AND or OR clause to which it applies.
The format of the condition syntax depends on the type of condition being tested. Specifically, these are:

Standard Compare♦
Character Range Test♦
Pattern♦
Pointer♦

Numeric♦
List Output♦
Input Object♦

Each condition is discussed in detail below.

AND
A sub-operation keyword specified immediately following an IF operation, an OR sub-operation or another AND
sub-operation.

The AND sub-operation joins a condition to the preceding IF, AND or OR condition via a logical AND. i.e. The combined
result from these conditions is true only if both conditions are true.

Note that an AND sub-operation will not be actioned if the preceding IF, AND or OR condition is false. Instead, the
condition processing proceeds to the next OR sub-operation, if present. This is because the result of the group of
conditions joined by logical AND operations is false and cannot be changed by further testing of subsequent AND
sub-operations in the same group. The consequence is that variables that would have been set as a result of testing these
conditions (e.g. DIFF, PTR=@variable, MATCHLEN=@variable/DCLvar) will remain unchanged.

OR
A sub-operation keyword specified immediately following an IF operation, an AND sub-operation or another OR
sub-operation.

The OR sub-operation joins a condition to the preceding IF or OR condition via a logical OR. i.e. The combined result from
these conditions is true if either of the conditions is true.

Note that OR sub-operations (and any AND sub-operations that follow) will not be actioned if a preceding IF or OR
condition is true. In this case the overall result of the IF operation is true and cannot be changed by subsequent condition
testing. The consequence is that variables that would have been set as a result of testing these conditions (e.g. DIFF,
PTR=@variable, MATCHLEN=@variable/DCLvar) will remain unchanged.

Because processing of AND conditions take precedence over an OR condition and SELCOPY does not allow specific
grouping of logically joined conditions, AND sub-operations will always be joined to preceding IF or OR operations.
Therefore, if an OR sub-operation is to be joined logically to a preceding AND sub-operation, separate IF operations must
be used. Where logic permits, the IF operation may be nested (conditional). e.g.
condition1 AND (condition2 OR condition3) may be expressed as:

 IF condition_1
 THEN IF condition_2
 OR condition_3

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

THEN operation|assignment
A sub-operation keyword specified immediately following an IF operation, an AND or OR sub-operation, another THEN
sub-operation or an ELSE sub-operation.

The THEN sub-operation specifies a conditional assignment, selection time operation or nested IF operation to be
executed based on a true or false result obtained from all logically joined conditions specified by the IF operation.

If the THEN sub-operation occurs following an ELSE sub-operation, the operation or assignment will be executed if the
overall result of the IF operation is false. Otherwise, the operation or assignment will be executed if the result is true.
Specification of at least one THEN sub-operation for a true result is mandatory.

ELSE operation|assignment
A sub-operation keyword specified immediately following the last true result THEN sub-operation

The ELSE sub-operation specifies the first conditional assignment, selection time operation or nested IF operation to be
executed if the overall result of the IF operation is false. All THEN sub-operations that follow the ELSE will also be
executed only if the result is false.

Specification of an ELSE sub-operation is optional and, if omitted, indicates that no action is to be taken if the overall
result of the IF is false. e.g.

 IF condition_1
 THEN operation_1 * Executed if condition_1 is true.
 THEN operation_2 * Executed if condition_1 is true.

 ELSE operation_3 * Executed if condition_1 is false.
 THEN operation_4 * Executed if condition_1 is false.

Chapter 4. SELCOPY Operations IF/AND/OR

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 151

Condition Syntax:

 Standard Compare Condition:

 (2) +----------------------------+
 v |
 |--- term --+-- op -- term --+---------+-+-----+------------------+---------|
 | | | |
 +- CASEI -+ +- FILL -+- char --+
 (1) +- PAD --+
 (1)

 Character Range Test Condition:

 |---+--+- POS -+--+-- startpos -- endpos --+-+-------- op ---- term -------->
 | +- P ---+ | | |
 | +-- ANY -----------------+ |
 | |
 +---- term ------------------------------+
 (3)
 +- PTR -- @ ---------+
 | |
 >----+---------+--+---------------+--+--------------------+--+-----------+--|
 | | | | | | | |
 +- CASEI -+ +- STEP -- int -+ +- PTR -- @variable -+ +- REVERSE -+
 +- REV -----+

 Pattern Condition:

 |---+- term --------+-- REGEXP -- regexp ---+----------------------------+-->
 | | | |
 +- POS -+- ANY -+ +- MATCHLEN -+- @variable -+-+
 +- P ---+ | |
 +- DCLvar ----+
 +- PTR -- @ ---------+
 | |
 >----+---------+--+--------------------+--+-----------+---------------------|
 | | | | | |
 +- CASEI -+ +- PTR -- @variable -+ +- REVERSE -+
 +- REV -----+

 Pointer Condition:
 +-- equal ------+
 | |
 |---+-- @variable --+------+---------------+--------- NULL -----------------|
 | | | |
 +-- DIFF -------+ +-- not_equal --+

 Numeric Condition:

 |---+--+- NUMERIC --+----- term --------------------------------+-----------|
 | +- NUM ------+ |
 | |
 +--------------------- term ----- NOT ---+- NUMERIC --+-----+
 +- NUM ------+

 List Output Condition:
 (2) +-----------------+
 v |
 |--- LINE -------+-- op --- term --+--|

 Input Object Condition:

 |---+-- DATA -----------------------------+---+-----------------------+-----|
 | | | |
 +-- DIR ------------------------------+ | +-- FILE -+ |
 | | | | | |
 +-- EOF ------------------------------+ +-+---------+-- fname --+
 | |
 | (2) +-----------------+ |
 | v | |
 +-- INCOUNT --+--+-- op --- term --+--+
 +-- IN -------+

Chapter 4. SELCOPY Operations IF/AND/OR

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 152

Condition Syntax Notes:

(1) Applicable to compare of character data only.
(2) Test conditions are performed against the first term for each operator and term combination provided none of conditions

are tests for equality. (i.e. op is not "=", "EQ", etc.)

The result of each test condition ultimately determines the result of the IF/AND/OR condition. This final result is true if all
test conditions are true and false otherwise (i.e. a logical AND is applied.) e.g.

 IF POS 21 LEN 5 TYPE=P >= 12 <= 56 <> 27

This is equivalent to:

 IF POS 21 LEN 5 TYPE=P >= 12
 AND POS 21 LEN 5 TYPE=P <= 56
 AND POS 21 LEN 5 TYPE=P <> 27

(3) A constant, declared variable or field definition term of character data type may be used to define a range of search
positions only if parameter PTR, STEP and/or REVERSE is specified.

Condition Parameters:

term
Identifies a term of the condition expression to be compared. Unless otherwise specified, term may be any of the
following:

A constant.◊
An arithmetic expression.◊
A declared variable source field (&DCLvar).◊
An @variable.◊
An internal variable.◊
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.◊
A declared variable (DCLvar).◊
An IF operation keyword (DIR, DATA, EOF).◊

The following restrictions apply to the specification of term:

An @variable or internal variable DIFF for a Pointer Condition.◊
Internal variable LINE for a List Output Condition.◊
Internal variable DIR, DATA, EOF or INCOUNT for an Input Object Condition.◊

If the first term of a condition is of character data type and parameter PTR, STEP and/or REVERSE is specified, then a
Character Range Test condition is performed.

IF keyword term DIR tests the current input record for a file or library directory entry, DATA tests the current input record
for a file or library member data record and EOF tests for an End-of-File condition. See description of the Input Object
condition for details.

op
A relational or bitwise operator which identifies the compare operation performed on two terms in the condition.

The following restrictions apply to the specification of op:

An equal or not equal relational operator for a Pointer Condition.◊
The NOT relational operator keyword for a Numeric Condition.◊

Relational Operators

Relational operators specifically test for equality and/or inequalities between the 2 terms, setting a true or false
condition accordingly. For terms of numeric or numeric character data type, this is an arithmetic comparison between
the values represented by the terms.

For terms of character data type, a condition based on a relational operator performs an arithmetic compare on a pair
of characters, one each from the same offset within each term. The value of each character is determined by the hex
value assigned to it by the base encoding of the term (ASCII or EBCDIC). e.g. 'A' (EBCDIC x'C1', ASCII x'41') is less
than 'B' (EBCDIC x'C2', ASCII x'42').

= b , EQ EX EXACT True if terms are equal.
<> ^ ^= ¬ ¬= NE NOT True if terms are not equal.
< LT True if the first term is less than the second term.
> GT True if the first term is greater than the second term.
<= =< ^> ¬> LE NGT HI HIGH True if the first term is less than or equal to the second term.
>= => ^< ¬< GE NLT LO LOW True if the first term is greater than or equal to the second term.

Chapter 4. SELCOPY Operations IF/AND/OR

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 153

Bitwise Operators

Bitwise operators test the bit pattern of the first term only. All terms must be of character data type and so bitwise tests
are also subject to the base encoding of the terms. The second term specifies the binary bit mask. Only those bits in
the first term which correspond to 1 (one) bits in the mask are tested for being set on, bits that correspond to 0 (zero)
mask bits are not tested. Results are returned for bitwise operators as follow:

ONES True if all tested bits are set on.
ZEROS or ZEROES True if all tested bits are set off.
MIXED True if all tested bits is a mixture of bits set on and off.

i.e. not all on and not all off.

If the first term length differs from the bit mask term length, then the term with the shorter length will be padded to the
length of the longer term using the FILL character.

 IF POS 21 ONES X'51' * Test 1 byte with bit mask B'0101 0001'
 AND 8 AT 1 ZEROS X'80' FILL=X'80' * Test 8 bytes with bit mask B'1000 0000'
 OR 5 AT @ ONES 5 AT 101 * Test 5 bytes with work area bit mask.

CASEI
Applicable only to conditions that involve a character compare, CASEI indicates that character case is ignored when
comparing alpha characters.

For the sake of the compare, SELCOPY takes a copy of both terms and uppercases the alpha characters in each. The
compare operation is then actioned on these modified terms.

Note that, if the term is a regular expression (regexp), CASEI applies only to alpha characters within the expression which
represent a literal_character.

FILL char
PAD

Applicable only to conditions that involve a character compare, FILL or PAD specifies the character (char) to be used to
pad a term to the length of the longer term in the compare operation.

POS startpos endpos
P

By default, specification of POS startpos endpos identifies the condition as being a Character Range Test. The arguments
startpos and endpos respectively identify the positions of the first and last character string to be a candidate for compare
against the specified term.

For all other types of condition, this parameter would represent a term which is a Type 2 (field_p1p2) field definition.

Where POS startpos endpos is intended to represent a field definition term, parameter FILL should be specified to force a
Standard Compare condition or RGX regexp to force a Pattern condition.

POS ANY
P

Applicable only to Character Range Test and Pattern conditions, POS ANY identifies an inclusive range of positions from
1 to the value of internal variable LRECL, in which the compare for term or regexp may be matched.

Positions outside this range are not tested so POS LRECL is the last position in which the last character of the search
character string or regular expression may be found. i.e. The entire matched value must occur between POS 1 and POS
LRECL.

STEP int
Applicable only to Character Range Test conditions, STEP specifies an integer value int. This is the increment value (or
decrement value if REVERSE is specified) to be applied to the previous candidate string position in order to identify the
position within the range of the next candidate string to be compared. See Character Range Test for more detail.

PTR @variable
Applicable only to Character Range Test and Pattern conditions, PTR specifies the name of the @variable to be assigned
the position value of the matching character string. If no match is found, @variable will be unset (set to NULL).
If PTR is not specified, the default @variable, @, is used.

REVERSE
REV

Applicable only to Character Range Test and Pattern conditions, REVERSE specifies that the range of specified positions
is to be searched in descending order.

REGEXP regexp
REGX
RGX

Specifies a regular expression in a Pattern condition.

MATCHLEN @variable | DCLvar
MLEN

MATCHLEN is applicable to all conditions that perform a compare on character data, although is only of significant use in
a Pattern condition. MATCHLEN nominates an @variable or declared variable (DCLvar) of numeric data type to be
assigned a value equal to the length of the matched data. If no successful match has occurred the value is 0 (zero).

Chapter 4. SELCOPY Operations IF/AND/OR

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 154

NULL
Used to test an @variable or DIFF term for null (unset) status. i.e. A Pointer condition.

NUMERIC
NUM

Used to test a character term for being a valid numeric character data type. i.e. A Numeric condition.

FILE fname
Specifies the up to 8 character file name assigned to a data object in an Input Object condition.

Standard Compare Condition

Performs a character or arithmetic compare of the value defined by the first term against the value of the second and
subsequent terms, and returns a true or false result based on the operator specification.

Note that the first term of a standard condition must not be a Type 2 field definition (field_p1p2) unless FILL is also specified. If
FILL is not specified, a range test condition is implied.

All the terms must be of the same data type class, i.e. either all character or all numeric (or numeric character). Compare of
date data types of different styles and source data types is not supported. However, an accurate comparison may be made if
date values are converted to numeric day number values (i.e. STYLE=D) If a mixture of data type classes is used, ERROR 134
(ambiguous string or arithmetic compare) is set during control statement analysis.

If the terms are of numeric or numeric character data type, an arithmetic compare will be performed, otherwise a character
compare will be performed.

Arithmetic Compare

Each term is treated as representing a signed numeric value, regardless of its source data type, length, precision and
scale attributes. Therefore, the numeric terms may have different source field attributes.

Before the compare is actioned, SELCOPY converts each term as necessary so that they are of the same source data
type, without loss of precision or scale.

The first value is compared, one at a time, against each of the subsequent term values and a true or false condition is
returned based on the relational operator that precedes them. Note that bitwise operators are invalid for an arithmetic
compare. If all comparisons are true, then the result of the condition is true. e.g.

 IF FLOATVAR >= -1.33 * Declared variable, FLOATVAR.
 OR 4 AT 11 TYPE=B > 3 AT 21 TYPE=P < @val-33+2

Character Compare

Each term is treated as representing a character string of explicit or implicit length. A byte for byte compare is
performed between the underlying hex values of the characters in the first term and their corresponding characters in
subsequent terms.

If the length of a character string represented by a term cannot be determined, then a length is implied which is the
same as the character string term against which it will be compared. If both strings have indeterminate length, then
ERROR 069 (length required) is set during control statement analysis. e.g.

 IF POS 101 = 'John' * 1st term length=4 (length of "John").

If terms have different lengths, then, for the sake of the compare only, the term representing the shorter character
string will be padded to the length of the longer string using the FILL character. Unless set by the FILL environment
option, the default FILL character is blank. e.g.

 IF POS 7 LEN=9 = 'AS' FILL=' ' * 2nd term padded (5 blanks).
 IF POS 1 LEN=4 = POS 11 LEN 10 FILL='*' * 1st term padded (6 asterisks).

The first term is compared, one at a time, against each of the subsequent terms using the relational or bitwise operator
which precedes them. Each comparison ends when a difference is found that does not satisfy this operator, in which
case the result is false, or when all characters have been exhausted (the result is true). If all comparisons are true,
then the result of the condition is true.

If CASEI is specified on a subsequent term, then for the sake of the compare performed against that one term only, all
alpha characters in both terms are upper cased. Alpha characters are identified for the base encoding of the character
string. e.g.

 IF POS 1 = 'ab' CASEI * True if pos 1 len=2 is "ab", "aB", "Ab" or "AB".

If any difference is found, then, whether or not the comparison satisfies the operator, the value of internal variable DIFF
is set, otherwise DIFF is unset (i.e. set to NULL). The value of DIFF when a difference is found, is 1 plus the
displacement from the base address of the first unmatched character within the first term character string. On
completion of all the term comparisons, the DIFF value will be that set or unset by the last comparison performed. e.g.

Chapter 4. SELCOPY Operations Standard Compare Condition

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 155

 DECLARE XXXVAR CHA(10) INI='XYZxyz'

 MOD POS 101 = 'xyz'

 IF POS 101 > 'xxx' * True. DIFF is set to 102.
 OR POS 101 <> 'xxx' <> 'xyz' * False. DIFF unset by compare on 'xyz'.
 OR XXXVAR+3 = 3 AT 101 * True. 3 AT 101 padded with 4 blanks.
 AND POS 101, 103 = 'XYZ' FILL='X' * True. FILL prevents a range test.
 AND 3 AT 101 = xyz * False. Unquoted literal upper cased.
 AND 3 AT 101 = xyz CASEI * True. Case ignored.
 AND 3 AT 101 ONES x'70,70,70' * True for ASCII "xyz" (x'78,79,7A')

Character Range Test Condition

For the character string represented by the second term (term2), a character compare is potentially performed against a number
of character strings of the same length as term2, each located at successive positions in storage. i.e. A range of positions are
scanned for a search string represented by term2.

The range of positions defines the locations of candidate strings to be compared with term2. However, the actual candidate
strings selected for compare by the range test, depend on the following:

The length of term2 and whether the range test is inclusive or exclusive of compare strings that occupy positions
beyond the last position of the range.

1.

The direction of the scan. i.e. Whether or not REVERSE is specified.2.
Whether or not strings are to be skipped due to the specification of STEP with a value greater than 1.3.

An inclusive range identifies all the possible start positions of the search string, term2. If term2 is more than 1 character in
length, the range of searched positions will include data positions that extend beyond the last position of the specified range.
Therefore, the position of the last possible candidate string in the range is the last position of the range. e.g.

 IF POS 1, 7 = 'ABC' * Search for 'ABC' starting in POS 1,2,3,4,5,6 and 7.

An exclusive range identifies the data positions within which the entire search string, term2, must be found. Therefore, the
position of the last possible candidate string in the range is one where the last character of the candidate string occupies the
last position of the range. i.e. the last position of the range plus 1 minus the length of term2.

 LRECL = 7
 IF POS ANY = 'ABC' * Search for 'ABC' starting in POS 1,2,3,4 and 5 (but not 6 and 7).

By default, the candidate strings are compared with term2 in ascending order of position until a match is found that satisfies the
specified operator. The position of the first possible candidate string in the range is the first position of the range.

If REVERSE is specified, the order in which the candidate strings are compared with term2 is reversed so that the last
candidate string is compared first. Until a match is found, the compare operations continue for candidate strings in descending
order of position.

 LRECL = 7
 IF POS ANY = 'ABC' REV * Search for 'ABC' starting in POS 5,4,3,2 and 1.

The next candidate string to be compared is at a position within the range which is at an increment (or decrement for
REVERSE) from the previously compared candidate string position, as defined by the STEP parameter. By default, STEP=1 so
no candidate strings are skipped.

 LRECL = 7
 IF POS 1,7 = 'AB' STEP=2 * Search for 'AB' starting in POS 1,3,5 and 7.
 IF POS ANY = 'AB' STEP=2 * Search for 'AB' starting in POS 1,3 and 5.
 IF POS ANY = 'AB' STEP=2 REV * Search for 'AB' starting in POS 6,4 and 2.

Each candidate string is compared against term2 until one is found that satisfies the relational or bitwise compare operator, or
until all strings have been compared.

If a match is found, the result of the range test is true and the @variable specified by PTR (default @) is automatically assigned
a value equal to the offset of the matching string start position from the base address. Otherwise the result is false and the
@variable is unset (set to NULL).

POS startpos endpos
Specifies an inclusive range of ascending positions identified by startpos endpos.

The startpos and endpos specifications may each be expressed as an arithmetic expression (expr) that evaluates to a
positive, non-zero, integer value. See positional syntax for a Type 2 field definition (field_p1p2) for more detail. e.g.

 IF POS 101, 101+LRECL-@len-3 = 5 AT 21 * Dynamic end position.
 AND POS 51, 100 = 'TEST' STEP=10 * Test pos 51,61,71,81,91.
 OR POS BINVAL+3, BINVAL+28 = 'X' * Binary DCLvar values.

POS ANY
Identifies an exclusive range of ascending positions starting at position 1 and ending at position LRECL, where LRECL
is the current value of the internal variable, LRECL.

Chapter 4. SELCOPY Operations Character Range Test Condition

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 156

Unless explicitly updated, LRECL is set to be the length of the last input data record. If the length of term2 is greater
than the LRECL value the result of the condition is false.

 DCL NAME5 CHA(5) INI='James'
 IF POS ANY = NAME5 * Equivalent to POS 1, 1+LRECL-10

term1 PTR=@variable | STEP=int | REVERSE
If term1 is a constant, declared variable or field definition of character data type, it may be used to define the range of
search string positions only if parameter PTR, STEP and/or REVERSE is also specified. This is to distinguish the
range test condition from a standard character compare condition.

If term1 is a declared variable (DCLvar), the range test is exclusive. The start position of the range defined by DCLvar
is the address of the variable source field (&DCLvar) or at an offset from that address if DCLvar is the first term in an
arithmetic expression (e.g. DCLvar+@-1). The end position of the range is the last position of the character variable
data.

 DCL IREC CHA(100)
 IF IREC = 'X:' PTR=@Disk * Equivalent to POS &IREC, &IREC+100-2
 OR IREC+80 = '\dir' PTR=@Dir * Equivalent to POS &IREC+80, &IREC+100-4

If term1 is a constant or field definition, the range test is inclusive. The start and end positions of the range are defined
by the limits of the constant or field definition.

Pattern Condition

For the character string represented by term, a single pattern matching compare is performed for the regular expression,
regexp.

The condition tests for a match (equality) only and so no operator is involved. If an operator is specified (as for a standard
condition), it is ignored without error.

Because a regular expression can represent text of varying length, term cannot be attributed a length from the regular
expression. Therefore, the length of term must be implied from the specification of term itself.

Unless regexp begins with "^" (circumflex), the regular expression can match text anywhere within term. Therefore, a pattern
condition has similar characteristics to an exclusive range test condition, setting an @variable when a match is found and the
condition is true.

For all other character compares, the text matched by the compare operation is fixed and is determined before the condition test
is performed. However, the length of text matched by a pattern condition may vary. The MATCHLEN parameter may be
specified to nominate an @variable or DCLvar (a declared variable of numeric data type), which will be assigned the matched
text length if a match is found.

If no match is found, the match length value assigned to @variable or DCLvar is zero (0).

* +....,....1....,....2....,....3....,.
 DECLARE DATA CHA INI="Source data Aa Ad Ad Ae Afff Ag Abxxx"

 IF DATA = RGX "A[~adefg]?" PTR=@HIT MATCHLEN=@MLEN * "Abx" at offset +32.
 * @HIT->DATA+32, @MLEN=3

 IF DATA = RGX "^data" PTR=@HIT MATCHLEN=@MLEN * No match.
 * @HIT=0, @MLEN=0

Pointer Condition

The current status of the named internal variable, @variable or DIFF is tested for being NULL. If the status is NULL, it means
the value is unset.

@variables and DIFF may automatically be set and unset by an IF operation. Since the value of these types of variable may
explicitly be set to zero, a specific test for NULL is necessary to identify whether the variable is set before using it in another
operation.

If specified, the operator must be a relational operator that tests for equal or not equal only.

 IF 5 AT 11 = 'Hello' * DIFF set if false.
 AND 4 AT 1 TYPE=B < 30 * Arithmetic compare.

 OR POS 21, 50 = 'World' PTR=@World * @World set if found.

 THEN IF DIFF NE NULL !THEN PRINT '"Hello" is missing.'
 ELSE IF @World = NULL !THEN PRINT '"World" is missing.'

Chapter 4. SELCOPY Operations Pattern Condition

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 157

Numeric Condition

Applicable only if term is of character data type, the character string represented by term is tested for being a valid numeric
value. If so, term may be used wherever a value of numeric character data type is valid.

Valid numeric character text contains only numeric characters (0-9) and may also contain:

One or more "," (comma) and/or blank characters use for punctuation only.•
A single "." (dot/period) character representing a decimal point.•
A single leading "+" (plus) or "-" (minus) character representing numeric sign.•

List Output Condition

Perform one or more standard arithmetic compare operations against the line number of the next line to be written to the
SELCOPY list output as represented by the internal variable, LINE. The value represented by term must be of numeric or
numeric character data type and the operator used must be relational.

Input Object Condition

Tests the status of an input data object as identified by fname. If fname is omitted, the prime input data object is assumed by
default.

DIR and
DATA

Applicable only to input data objects read with the DIRDATA option. The DIR and DATA input object conditions
test the current input record for being a file or PDS/PDSE library directory entry, or a file or PDS/PDSE library
member data record respectively.

EOF For sequential input, tests whether End-of-File has been reached.

Warning:
Normal operation of SELCOPY selection time processing involves an implied loop of the executable control
statements which automatically terminates when End-of-File is flagged following a READ operation on the
prime input object. Once terminated, SELCOPY's end of job processing begins.

The presence of an IF EOF condition for the prime input object indicates that additional processing is to occur
after all prime input data has been read. To allow for this, IF EOF on the prime input will automatically suspend
SELCOPY's termination of the processing loop until one of the following occurs:

A GOTO EOJ operation is executed.•

At the start of a processing loop itreration, either the End-of-File flag or STOPAFT threshold flag has
been set for all READ operations included in the program control statements.

•

If neither of these events occur, the program will enter an infinite loop. It is recommended that, when IF EOF is
specified for the prime input, a GOTO EOJ operation is included to control the point at which the loop is
terminated and the start of normal end of job processing.

INCOUNT Perform one or more standard arithmetic compare operations against the current number of input records read
from the data object, as represented by the internal variable INCOUNT. The value represented by term must be
of numeric or numeric character data type and the operator used must be relational.

Note that two input record count values are maintained for data objects read using DIRDATA, one each for the
directory entries and the data records. The data record count is reset to zero when a new directory record is
read.

The INCOUNT value for DIRDATA input applies to the type of record (DIR or DATA) that was last read from the
object. To ensure a test of the correct INCOUNT value, the INCOUNT test should be performed subject to a
DIR or DATA condition. e.g.

 IF DIR INPDS
 AND INCOUNT = 10 INPDS
 THEN PRINT 'Processing the 10th PDS member'

Chapter 4. SELCOPY Operations Numeric Condition

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 158

INCLUDE
Include control statements from another file.

Syntax:

>>--- INCLUDE ---+-- fileid ---+---><
 | |
 +-- fname ----+

 >----+-----------+-+-----------+--><
 | | | |
 +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

INCLUDE INC

Description:

The INCLUDE operation is classed as one of the control statement analysis operations.

During SELCOPY's control card analysis, execution of INCLUDE will insert the unaltered contents of the file specified by fileid or
fname into the control statement input stream immediately following the INCLUDE operation statement. SELCOPY will treat these
inserted file records as part of the control statement input and include them in its control statement analysis processing.

INCLUDE allows organisation of SELCOPY control statements so that common sub-routines and program elements (e.g. EQU
operations for equated symbol definitions and DECLARE operations for variable declarations) may be saved in a separate control
statement file and included where appropriate.

 selcopy !inc ssinc01.i01 !inc ssinc01.i03 !if incount gt 20 !then eoj !end

Nesting of include statements is supported so that an included file can itself contain one or more INCLUDE operations.

Parameters:

fileid
Identifies the file to be included. fileid is a fileid clause specifying the name by which the file is known to the local system.

fileid may be specified as an unquoted literal or a quoted character constant only.

In a Windows or POSIX environment, the directories specified by environment variable, PATH, will be searched if fileid is
a relative file path.

Notes on fileid specification:

In z/OS, where fileid may be interpreted as being either a z/OS data set name or an HFS/ZFS Unix-like file name,
then SELCOPY will treat fileid first as a data set name and then, if not found, as a Unix-like file name. Similarly in
a z/VM CMS environment, where fileid may be interpreted as either a CMS mini disk file specification or a BFS
Unix-like file name.

1.

On a z/OS system, if environment option DSNPFX is in effect, then the TSO prefix (TSO/E) or ACF userid (batch)
will be prefixed to fileid if the constant, variable or field definition value used is unquoted. Furthermore, open of a
data set without a DSN prefix will be attempted if the initial attempt to open a data set with a DSN prefix fails.

Only if this second attempt to open a data set also fails, will fileid be treated as a Unix-like HFS/ZFS file name as
described in note 1. above.

2.

A Windows or Unix-like fileid is not upper cased, even if specified as an unquoted literal.3.

fname
Applicable only to z/OS and z/VM CMS, if fileid is a programmer defined file name, then it will be treated as an fname.

The file object (z/OS data set, z/VM CMS file or HFS/BFS file path) to which fname is allocated will be included in the
control statement input stream.

If fname is not allocated, then it will be treated as being part of a fileid clause specification.

Chapter 4. SELCOPY Operations Input Object Condition

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 159

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

Examples:

 INCLUDE g:\cc\slc/ctl/ssinc01.i02 * Both "/" and "\" are acceptable.
 INC ctl\ssinc01.i01 * Relative fileid path.
 INC //serv00a/selc/ctl/equ01 * UNC fileid.

 INCLUDE DDINC * z/OS or z/VM CMS fname (ddname).
 INCLUDE 'CBL.SELCOPY.CTL(INCEQU01)' * z/OS library member.
 INCLUDE '/u/home/selcopy/src/ssdeclare_xfile' * z/OS HFS full fileid path.

Chapter 4. SELCOPY Operations INCLUDE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 160

INSERT
Insert a record into a file read from an input data object source.
For ODBC table processing, INSERT is a synonym for the WRITE operation.

Syntax:

 +- FILE -+
 | |
>>-- INSERT ---+---+--------+-- fname ------------------------------------+-->
 | |
 +-- fileid --------+
 | |
 | |
 | +--- FILE ---- DEFAULTF --+ |
 | | | |
 +-+-------------------------+----- DSN ---- fileid --------+
 | |
 | +- FILE -+ |
 | | | |
 +-+--------+-- fname -----+

 +- FROM -- POS 1 -- LENGTH LRECL --+
 | |
 | +------------------------------+ |
 | v | |
 >---------------+-+------------------------------+-+------------------------>
 | |
 +---- | Insert Element | ------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Insert Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Synonyms:

INSERT INS ISRT

Description:

Insert of a record into a file object is supported for z/OS VSAM and z/VM CMS VSAM data sets with organisation KSDS or RRDS,
and Micro Focus indexed and relative files. Insert of an ODBC table row is supported for an output table only and is described
under the WRITE operation.

INSERT will attempt to insert a record at an eligible location within the file fname which may already contain data records. In order
to execute the INSERT operation, the file object must first be opened for output or for input with update capability (i.e. READ with
UPD).

Before INSERT may be executed for a VSAM RRDS data set or Micro Focus relative file, the READ fname operation must first be
executed to point to the position within the file at which the record will be inserted. Furthermore, since the file must be opened for
update, the UPD parameter must also be specified on a READ operation for the file. If not, ERROR 26 will be returned indicating an
input/output conflict on fname. Note that UPD may be specified on any READ or OPEN operation for the same fname.

However, INSERT for VSAM KSDS data sets and Micro Focus indexed files will insert a record at the correct location within the file
according to the record's key field value. Therefore, unless input processing of fname is required, INSERT may be executed without

Chapter 4. SELCOPY Operations INSERT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 161

having to first READ the file. If input processing is required, the UPD parameter must be specified on a READ or OPEN operation
for fname.

Note that, if fname is processed for input with update the current input file position will be lost following successful execution of an
INSERT operation. This is caused by the switch from direct processing for insert, back to sequential processing. Any attempt to
perform a sequential read on the file immediately after an insert will return ERROR 537 (failed to reposition for sequential read).
therefore, before a sequential read can be executed, a direct read is required to re-establish the input file position following an
insert.

UPDATE operations, DELETE operations and INSERT operations may exist for the same data object within a SELCOPY program.

INSERT is not supported for input read via a CAT sub-operation.

Relative Record File Insert

Before a record can be inserted into a VSAM RRDS or Micro Focus relative file, a successful READ operation must be
executed in order to establish an input file position before an empty slot or at the end of the file. Any attempt to insert a record at
any other input file position will return an error and then terminate the SELCOPY run.

The INSERT operation will insert a record of fixed length, as defined for the input file, containing data starting at the FROM
position.

Following execution of INSERT, a direct read by record (READ parameter REC or STARTREC) is required to once again
establish the input file position before a sequential read can be executed.

Keyed File Insert

For VSAM KSDS data sets and Micro Focus indexed files, no read of the input file is necessary to establish an input position.

VSAM and the Micro Focus file handler will insert records into a keyed file in their correct key sequence. Therefore, records may
be inserted in any key sequence. If a duplicate record error is returned following execution of an INSERT operation, then
SELCOPY ends with ERROR 538 (write failed).

If records are to be inserted in ascending order of key sequence, then the WRITE operation should be used instead of INSERT.
WRITE opens the file for sequential output and loads records to the file with much greater efficiency than INSERT.

The INSERT operation will insert a record containing data starting at the FROM position, with a length equal to the current value
of variable LRECL. If the LRECL of the current record exceeds the defined maximum for the file, the record is truncated at the
maximum length and return code 5 is set.

If the file is also being processed for input, then following execution of INSERT, a direct read by key (READ parameter KEY,
KGE, STARTKEY or STARTKGE) is required to once again establish the input file position before a sequential read can be
executed.

Parameters:

fileid
For file object insert where no specific fname has been defined on the READ operation, fileid may be used to identify the
same file referenced on READ. fileid is a fileid clause specifying the name by which the input file is known to the local
system.

If fname is specified and is already associated with a fileid, then re-specification of fileid on the INSERT operation is
unnecessary.

If not specified as the DSN parameter value, then specification of FILE is invalid and the associated fname is derived from
fileid as described by fileid for the READ operation.

fileid may be specified as an unquoted literal, a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If specified as a variable or field definition, fileid must be an argument to parameter DSN. Also, fileid specified on the
READ operation for the input file, must also be a variable or field definition (i.e. a dynamic value).

DSN fileid
Specifies the name of the input file. See fileid for details.

If no fname is specified on an INSERT operation which uses DSN, then an fname of DEFAULTF is used by default.

FILE fname
F

Identifies the file name assigned to the input file to which records will be inserted.

Chapter 4. SELCOPY Operations INSERT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 162

fname must match the specified (or derived) file name used on the READ or OPEN operation for the file to which records
will be inserted. It may only be specified as an unquoted literal.

The fname value may be specified with or without the FILE parameter keyword.

Insert Element
Specifies an insert element that constitutes a portion of the insert record data.

Multiple insert element specifications are concatenated with no intervening blanks and in the order in which they are
specified to construct the complete insert record. The combined lengths of each of the elements define the insert record
length. Note that, for keyed files, the key value will be obtained from the complete insert record at the defined key field
offset.

If no insert element is specified, the insert record data defaults to a single field definition starting at position 1 with length
equal to the prevailing value of the variable LRECL. (i.e. FROM POS 1 LENGTH LRECL).

All insert element values that are of numeric or character numeric data type are automatically converted to decimal
character display format before being written to the insert data object (see the FORMAT parameter). Use &DCLVar to
output the unformatted value of a numeric DCLVar.

Each insert element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type.

If specified as a type 1 field definition but without a length, the field will have a default length equal to the
prevailing value of variable LRECL. However, if parameter FORMAT is used to convert the field data to printable
hex, specification of a length is mandatory.

Although not necessary, keyword FROM may also be used before an insert element specified as a char_constant
or a DCLVar of character data type.

char_constant
A quoted or hexadecimal character constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for data specified by the
insert element.

The source data in an insert element of numeric data type is automatically converted to displayable character
format (using a CVxC operation) before it gets written. The length of the insert element is determined by
fmt_string, not the length of the insert element source.

For insert elements of character data type, fmt_string must be a printable hex format string for which a CVCH
(convert character to hex) operation will be performed.

For insert elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the insert element value is converted from its source numeric data type to the
decimal character display format described by the format string template.

For an insert element specified as an @variable, IntVar or DCLVar of numeric or character numeric data type, a
default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the fmt_string specified on
the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for @variable, IntVar and DCLVar representing an integer value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

Chapter 4. SELCOPY Operations INSERT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 163

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Example:

Read variable length CARD input records and insert them into a KSDS data set defined with a key field of length 7 at offset 0 of
the record, i.e. KEY(0,7). Based on this key field definition, input records are in no particular order.

 READ CARD
 PRINT
 OPEN INVS DSN='NBJ.BASIC01.KSDS' KSDS UPD STOPAFT=1 * Open for update.
 INSERT INVS * Insert records.

 END
 0001440 Boys & Girls
 0000660 21
 0000040 Exile On Coldharbour Lane
 0000580 Alanis Morissette: The Collection
 0001550 Jagged Little Pill

Chapter 4. SELCOPY Operations INSERT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 164

LEFT
Left adjust text in a character source value.

Syntax:

 +- FROM --+ +-- TO --- source ---+
 | | | |
>>--- LEFT ------+---------+-- source ----+--------------------+------------->
 | |
 +-- TO --- target ---+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

LEFT ADJL

Description:

The text represented by the source character value is left adjusted and assigned to the target value. The target location may
overlap storage at the source value location and if target is not specified, then the source value is updated.

The source text value is left adjusted in an area of storage containing all blank characters and of length equal to the target value
field area if specified, otherwise the length of the source value field area.

Multiple consecutive blank characters that exist between non-blank characters in the source value text, are condensed to a single
blank character in the left adjusted value. e.g.

 POS 101 = " xxx yyy zz" * ,....1....,
 LEFT 20 AT 101 TO POS 1, 15 * To get: "xxx yyy zz "

Parameters:

FROM source
References the character text value to be left adjusted. source may be specified as a declared variable of character data
type, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) character field definition.

If TO target is specified, source may also be specified as a quoted or hex character constant.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of target is implied. Otherwise,
ERROR 69 is returned.

TO target
Identifies the declared variable or Type 1, 2 or 3 field definition that is the target of the operation. If source is a constant
value, then TO target is mandatory.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of source is implied.

Default is TO source.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of LEFT for the same source and target values is unnecessary and so TIMES should never be used
on the LEFT operation. See common parameter TIMES for details.

Chapter 4. SELCOPY Operations LEFT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 165

LOG
Write data to log output.

Syntax:

 +- FROM -- POS 1 -- LENGTH LRECL --+
 (1) | |
 +- TYPE --- S --+ | +------------------------------+ |
 | | | v | |
>>--- LOG ----------+---------------+--+-+------------------------------+-+-->
 | | | |
 +- TYPE -+- B --+ +---- | Output Element | ------+
 +- C --+
 +- D --+
 +- DX -+
 +- H --+
 +- M --+
 +- MC -+
 +- MP -+
 +- N --+

 >---+--------------------+--+--------------------+--+--------------------+-->
 | | | | | |
 +- REPLY -- in_area -+ +- DATAWIDTH -- int -+ +- PAGEWIDTH -- int -+
 (2)

 +- DUMPALL -- NO --+ +- DUMPENC -- "|:" --------+
 | | | |
 >---+------------------+--+--------------------------+---------------------->
 | | | |
 +- DUMPALL -- YES -+ +- DUMPENC -- char_string -+

 +- STOPAFT -- 50 ---+
 | |
 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Output Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Syntax Notes:

(1) If only one output element is used, then any TYPE specification other than TYPE B may be provided following the
output element specification.

(2) REPLY is supported in Windows and POSIX environments only.

Synonyms:

LOG WTO SYSLOG

Description:

Each execution of the LOG operation will write one or more lines of data to the SELCOPY log output. The log output defaults to
STDERR for Windows and POSIX environments or SYSOUT otherwise, however, output may be a file identified by input parameter
-log fileid.

Chapter 4. SELCOPY Operations LOG

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 166

By default, output to STDERR, z/OS TSO/E SYSOUT and z/VM CMS SYSOUT is directed to the user's terminal.

The length of the logged data is determined by the combined display lengths of the output elements. With the exception of the
header and footer lines, the format of the logged data matches the print data row that would be written to the list output print block
for a PRINT operation. i.e. With the exception of TYPE S (system) output format, the logged output line will include the logged data,
the prime input record number and length and also the LOG operation selection id and its execution number. See description of the
SELCOPY list print block output for more detailed information.

Except when running in a z/OS batch environment, the LOG operation supports specification of parameter INTO (synonym REPLY)
which allows input to the SELCOPY program following output of the logged data. If INTO is specified, SELCOPY selection
processing will pause until a response is received.

Parameters:

Output Element
Specifies an output element that constitutes a portion of the logged data.

Multiple output element specifications are concatenated with no intervening blanks and in the order in which they are
specified to construct the complete log output record. The combined lengths of each of the elements define the log output
record length.

If no output element is specified, the output record data defaults to a single field definition starting at position 1 with length
equal to the prevailing value of the variable LRECL. (i.e. FROM POS 1 LENGTH LRECL).

Before data is logged, output element values that are of numeric or character numeric data type are automatically
converted to decimal character display format if any of the following is true:

The output element is a DCLVar.1.
Multiple output elements are specified.2.
FORMAT is included in the output element specification.3.

Note that &DCLVar may be used to output the unformatted value of a numeric DCLVar.

Each output element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of character (TYPE C) data
type.

If specified as a type 1 field definition but without a length, the field will have a default length equal to the
prevailing value of variable LRECL. However, if parameter FORMAT is used to convert the field data to printable
hex, specification of a length is mandatory.

Applicable only to PRINT, LOG and PLOG operations, keyword LRECL, which usually defines the maximum
output record length, is instead used as a synonym for keyword LENGTH in a type 1 field definition. Furthermore,
if LENGTH is specified without a position, the default location of the field is POS 1.

Although not necessary, keyword FROM may also be used before an output element specified as a
char_constant or a DCLVar of character data type.

char_constant
A quoted or hexadecimal character constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for data specified by the
output element.

The source data in an output element of numeric data type is automatically converted to displayable character
format (using a CVxC operation) before it gets printed. The length of the output element is determined by
fmt_string, not the length of the output element source.

Chapter 4. SELCOPY Operations LOG

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 167

For output elements of character data type, fmt_string must be a printable hex format string for which a CVCH
(convert character to hex) operation will be performed.

For output elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the output element value is converted from its source numeric data type to the
decimal character display format described by the format string template.

For an output element specified as an @variable, IntVar or DCLVar of numeric or character numeric data type, a
default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the fmt_string specified on
the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for @variable, IntVar and DCLVar representing an integer value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

DATAWIDTH int
DW

Applicable to all types of log format other than system (TYPE S) or dump (TYPE D or DX), DATAWIDTH specifies the
width of the printed data column in the print block. i.e. the length of output element data to be written to each line of the log
output.

DATAWIDTH is an environment option which is established during control statement analysis and applies to all PRINT
and LOG operations executed during the SELCOPY program run. See OPTION DATAWIDTH for further details.

The default is the value set by OPTION DATAWIDTH in the SELCNAM file, otherwise a value of 100 is used.

DUMPALL YES | NO
Applicable to dump (TYPE D or DX) format only.

DUMPALL determines whether or not second and subsequent consecutive lines of dump format output that contain
identical data to the first line, are to be condensed and displayed as a single output row containing the literal "=same="
followed by a parenthesised count of the number of condensed lines.

For the LOG operation on which it is specified, DUMPALL YES will output all line containing duplicate data, DUMPALL NO
will condense these lines. Note that DUMPALL is a synonym for DUMPALL YES.

The default value is set by environment option, DUMPALL. Otherwise, the default is NO.

DUMPENC char_string
Applicable only to dump format which includes character representation of the data (TYPE D).

For the LOG operation on which it is specified, DUMPENC specifies char_string, a character constant of length 1 or 2,
which identifies the characters used to enclose the character representation of the dump format output.

The first (or only) character defines the enclosing character used on logged lines that have not been condensed
to a single line. (See option DUMPALL above).

1.

The second character defines the enclosing character used on logged lines that have been condensed to a
single line.

2.

The default value is set by environment option, DUMPENC. Otherwise, "|" (or symbol) and ":" (colon) are used as the first
and second characters respectively.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

PAGEWIDTH int
PW

Although the LOG operation does not output data to the SELCOPY list output, the PAGEWIDTH is still relevant to data
logged in dump (TYPE D or DX) format. For dump format only, PAGEWIDTH restricts the length of printed data written to
each line of the print block.

See description of TYPE=D in the print block output for details on how PAGEWIDTH affects dump format print.

PAGEWIDTH is an environment option which is established during control statement analysis and applies to all PRINT
and LOG operations executed during the SELCOPY program run. See OPTION PAGEWIDTH for further details.

The default value is set by OPTION PAGEWIDTH in the SELCNAM file, otherwise a value of 132 is used for POSIX
environments and 133 for z/OS and z/VM CMS environments..

Chapter 4. SELCOPY Operations LOG

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 168

REPLY in_area
INTO

Applicable only in Windows and POSIX environments, presence of the INTO parameter will pause SELCOPY processing
following execution of the LOG operation, pending input from the STDIN input stream which is usually assigned to the
input terminal.

REPLY specifies in_area which identifies a length and location in storage into which the inputted text string will be
returned without translation. in_area may be specified as a declared variable of character data type or a Type 1
(field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If in_area is a field definition, the following is true:

For a type 1 field definition, LRECL may be used as a synonym for LENGTH.1.

If a single numeric argument, then this value represents the length of the input field, not its position. The default
field position is POS 1.

2.

If the length of in_area is greater than the length of the inputted text string, then the input text will be left adjusted within
in_area and padded with blanks. Therefore, a null string will result in an in_area containing all blanks.

The actual length of the input text string last entered following a LOG operation with REPLY, is saved as a 4-byte binary
integer value in the internal field UXREPLYL.

STOPAFT int
See common parameter STOPAFT for details.
Default is STOPAFT 50.

TIMES int
See common parameter TIMES for details.

TYPE B | C | D | DX | H | M | MC | MP | N | S
TY

Identifies the type of print output to be used when writing the logged data. See PRINT for detailed information on TYPE
options.

Chapter 4. SELCOPY Operations LOG

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 169

LOWER
Lower case alpha text in a character source value.

Syntax:

 +- FROM --+ +-- TO --- source ---+
 | | | |
>>--- LOWER -----+---------+-- source ----+--------------------+------------->
 | |
 +-- TO --- target ---+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

All upper case alpha characters belonging to the ISO Basic Latin alphabet that occur within text represented by the source
character value, are lower cased and the value assigned to target. The target location may overlap storage at the source value
location. If target is not specified, then the source also becomes the target of the operation and its value is updated.

The interpretation of a character as alpha depends on the local code page used by the system on which SELCOPY executes. In all
ASCII and EBCDIC code pages, the 26 upper case Latin alpha characters (A to Z) are at invariant code points. i.e. ASCII
[x'41'-x'5A'] and EBCDIC [x'C1'-x'C9', x'D1'-x'D9', x'E2'-x'E9']

Each occurrence of an upper case alpha character will translate to its equivalent lower case representation (a to z). These
characters also exist at invariant code points. i.e. ASCII [x'61'-x'7A'] and EBCDIC [x'81'-x'89', x'91'-x'99', x'A2'-x'A9']

 DECLARE REF CHAR INI='WILLIAMS, Brian --- 32% '
 LOWER REF
 PRINT REF * Prints: "williams, brian --- 32%"

The LOWER operation is a synonym for the TRAN operation with parameter LOWER.

If lower casing is required for extended Latin characters or characters belonging to other alphabets, then the TRAN operation must
be used. The translate table referenced by the TRAN operation would need to identify each character's lower case code point at its
upper case code point location within the table.

Parameters:

FROM source
References the character text value in which alpha characters will be lower cased. source may be specified as a declared
variable of character data type, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) character field
definition.

If TO target is specified, source may also be specified as a quoted or hex character constant.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of target is implied. Otherwise, a
length equal to the prevailing value assigned to variable LRECL is used.

TO target
Identifies the declared variable or Type 1, 2 or 3 field definition that is the target of the operation. If source is a constant
value, then TO target is mandatory.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of source is implied.

If the length of target is less than that of source, then the value assigned to target is truncated on the right. If its length is
greater than that of source, then the source length is used. In this case, text assigned to target that exists at locations
beyond the length of source, remains unchanged following the UPPER operation. (i.e. No padding occurs.)

Default is TO source.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of LOWER for the same source and target values is unnecessary and so TIMES should never be
used on the LOWER operation.
See common parameter TIMES for details.

Chapter 4. SELCOPY Operations LOWER

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 170

MOD
Modify the value assigned to a variable or field definition.

Syntax:

 (1) (2) +-- = --+ (3)
 +- MOD -+ +- MOD -+ +----------------------+ +- FILL char -+
 | | | | v | | |
>>--+-------+-- target --+-------+--+- | Source Element | -+-+-------------+->

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Source Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+-+--------+-- field_definition ----+---+--------------------------+----|
 | | | |
 | +- FROM -+ (5) |
 | |
 +------------- constant ------------+
 | |
 +------------- DCLVar --------------+
 | |
 +------------- &DCLVar -------------+
 (4) | |
 +------------- @variable -----------+
 | |
 +------------- IntVar --------------+
 | |
 +------------- expr ----------------+

Syntax Notes:

(1) Operation keyword MOD must not be specified if target is an internal variable (e.g. LRECL or RETCODE) or an
@variable. However, keyword MOD is mandatory if target is a Type 3 (field_nATp) field definition. For all other
specifications of target, keyword MOD is optional.

(2) Parameter keyword, MOD, or the delimiter character "=" (equals) is mandatory if target is a field definition without
a length value.

(3) Multiple source elements are supported only if target is of character data type.
(4) @variable, IntVar and expr source elements are valid only if target is of numeric or numeric character data type.
(5) FROM is mandatory if field_definition is one of a number of specified source elements. Otherwise it should not be

used.

Synonyms:

MOD ASSGN LET

Description:

The MOD operation is an assignment statement, used to assign a value directly to a variable or field definition.

The source and target specifications may be of different data types. If so, the MOD operation will automatically attempt to convert
the source value to the target data type.

If the target variable or field definition is of character data type, then multiple source element values may be specified. Multiple
source element values are concatenated as character strings with no intervening blanks, and together define the value assigned to
target. e.g.

 DECLARE PDVAL DEC(8,2) INI='-8,637.44' FMT='999,999.99 CR'

 MOD POS 101 = '---' FROM 5 AT 22 '--- : ' PDVAL ': ' FROM 4 AT 1

Chapter 4. SELCOPY Operations MOD

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 171

If the length of a character type target is greater than that of the assigned value, then the value is padded on the right to the length
of the target using the character specified by the FILL parameter. If the length of the target is less than the assigned value, then the
value is truncated on the right.

For character value assignment, the source value is copied from left to right to the target location. If the field belonging to the target
value overlaps the field belonging to a source value at any location beyond the first position of the source field, then the effect is as
if characters are copied one at a time from the source to the target fields. i.e. A character that has been copied to the target field
becomes a source field character that is copied later in the execution of the operation. e.g. In the following, characters "Ab" at
positions 1 and 2 are copied to positions 3 and 4 respectively before characters at positions 3 and 4 are copied to positions 5 and
6, etc.

 MOD POS 1, 10 = 'Abc' FILL='X' * Source: 'AbcXXXXXXX'
 MOD POS 3 = POS 1 LENGTH 6 * Target: 'AbAbAbAbXX'

This behaviour provides a useful technique by which character data may be propagated within a field.

If the target variable or field definition is of numeric data type, then the assigned value must have a numeric interpretation. The
numeric value is then converted to the data type of the target.

Parameters:

target
References the variable or field to which the value will be assigned. target may be specified as a declared variable,
internal variable or @variable, or as a field definition of any type.

If specified as a Type 4 (field_pFMT) field definition, the target is of numeric character data type.

If a field definition of type 1 (field_pLENn) is specified without a length, then, regardless of a TYPE specification, target is
treated as being of character data type and the total length of the source elements is implied. Otherwise, ERROR 69 is
returned.

Source Element
Specifies a source element value to be assigned.

If target is of numeric or numeric character data type, then only one source element may be specified. The source element
may be an @variable, an internal variable (IntVar), an arithmetic expression (expr) or a constant, declared variable or field
definition of numeric or numeric character data type.

If target is of character data type, then multiple source elements may be specified to define a single value with a length
equal to the combined lengths of all the source element values. Multiple source element values are concatenated in the
order in which they are specified.

Before a character value is assigned to target, source element values that are of numeric or numeric character data type
are automatically converted to decimal character display format if any of the following are true:

The output element is a DCLVar.1.
FORMAT is included in the source element specification.2.

Note that &DCLVar may be used to output the unformatted value of a numeric DCLVar.

Each source element may be specified in one of the following formats:

FROM field_definition
FR

A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type. If target is of
numeric or numeric character data type, then the field definition must be of numeric or numeric character data
type.

If specified as a type 1 field definition but without a length, then the length of target is implied.

Specification of the FROM keyword is mandatory if field_definition is just one of a number of source elements.
Otherwise, it should not be used.

constant
A constant representing a character, numeric or numeric character value.

If target is of numeric or numeric character data type, a hex character constant source value is treated as being a
hex binary integer constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

Chapter 4. SELCOPY Operations MOD

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 172

@variable
Supported for numeric or numeric character target values only, @variable is the name of an @variable that has a
non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
Supported for numeric or numeric character target values only, IntVar is the name of a SELCOPY internal
variable.

expr
Supported for numeric or numeric character target values only, expr is an arithmetic expression.

FORMAT fmt_string
FMAT
FMT

For character target values only, source elements of numeric or character numeric data type are automatically
converted to displayable character format (using a CVxC operation) before the assignment is performed.

FORMAT specifies fmt_string, the numeric format string used as the character display template for data specified
by the source element. The length of the source element is determined by fmt_string, not the length of the
element's source field.

If the source element is specified as a DCLVar, a default fmt_string is used if no FORMAT parameter is specified.
This is the fmt_string specified on the DECLARE operation. Otherwise, the default fmt_string is one of the
following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for a DCLVar which represents an integer value.
'SS,SSS,SSS,SS9.9999' Used for a DCLVar which represents a rational value.

FILL char
PAD

Applicable only to assignment of a value to a target of character data type. FILL defines the pad character (char) to be
used when the length of target is less than the total length of the source value.

The pad char may be specified as a quoted or hex character constant of length 1.

The default is the blank character.

MOD
=

The MOD parameter keyword may be used to distinguish the target specification from the source element(s). Its use is
mandatory if target is specified as a Type 1 (field_pLENn) field definition without a length. e.g. In the following operation,
parameter MOD is necessary to prevent SELCOPY from interpreting target as a Type 2 (field_p1p2) field definition:
 POS 5, 10

 MOD POS 5 MOD 10 AT 101 * Target field is: POS 5 LENGTH 10.

In all SELCOPY control statements, the "=" (equals) symbol is treated as a blank delimiter. However, for the MOD
operation only, it may also be interpreted as a synonym for parameter MOD.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

 DECLARE ID BIN(4) * Binary integer variable.
 DECLARE PRICE DEC(8,2) * Decimal fixed point variable.
 DECLARE COMPF FLT(8) BIN * Double precision floating point.

 DECLARE INV_ADDR1 CHA(50) * Character variable.
 DECLARE COMPANY CHA(60) * Character variable.
 DECLARE CHA_VAL CHA FMT='ss,ss9' * Numeric character variable.

 OPTION WORKLEN 2000 * Work area buffer.

 MOD POS 1 'ABC Holdings Ltd' * Character field (length=16).
 MOD 4 AT 31 TYPE=B = 255 * Binary integer field.
 MOD 8 AT 41 TYPE=P = 4184 * Packed Decimal integer field.

 PRICE = '4,385.50' * Fixed point decimal constant.
 MOD COMPF = '-2.484682e15' * Constant value with exponent.

Chapter 4. SELCOPY Operations MOD

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 173

 POS 51,71 'Ms Antonia Harding' FILL='-' * Padding (18 into 20).

 MOD COMPANY = POS 1, 20 * Padding (20 into 60)
 INV_ADDR1 = COMPANY * Truncation (60 into 50).

 @VAR = 4 AT 31 TYPE=B * @variable value.

 MOD ID = POS 41 LENGTH=8 TYPE=P * Packed decimal to Binary.

 @VAR = @VAR+ID-100 * Arithmetic expression.
 LRECL = 55+@VAR * Internal variable value.
 RC = 33 * Set SELCOPY's return code.

 MOD CHA_VAL = 235L * Zoned decimal constant (-2,352).

Chapter 4. SELCOPY Operations MOD

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 174

MOVE
Move (copy) a value to a declared variable or field definition.

Syntax:

 +- FILL -- char --+
 | |
>>--- MOVE --- | Source Element | ---- TO --- target ---+-----------------+-->

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Source Element:

 |---+-+--------+-- field_definition ----+-----------------------------------|
 | | | |
 | +- FROM -+ |
 | |
 +------------- constant ------------+
 | |
 +------------- DCLVar --------------+
 | |
 +------------- &DCLVar -------------+
 (1) | |
 +------------- @variable -----------+
 | |
 +------------- IntVar --------------+
 | |
 +------------- expr ----------------+

Syntax Notes:

(1) @variable, IntVar and expr source elements are valid only if target is of numeric or numeric character data type.

Description:

The MOVE operation performs a similar function to the MOD operation in that the value represented by a source element is
assigned to target. However, unlike MOD, only one source element value is supported.

The source and target specifications may be of different numeric or numeric character data types. If so, the MOVE operation will
automatically attempt to convert the source value to the target data type.

For a target specification of character data type, the source value must also be of character data type. The source value is copied
from left to right to the target location. If the field belonging to the target value overlaps the field belonging to a source value at any
location beyond the first position of the source field, then the effect is as if characters are copied one at a time from the source to
the target fields. i.e. A character that has been copied to the target field becomes a source field character that is copied later in the
execution of the operation. e.g. In the following, characters "Mm." at positions 1 to 3 are copied to positions 4 to 6 respectively
before characters at positions 4 to 6 are copied to positions 7 to 9, etc.

 MOVE 'Mm.LKJNVCJ' TO POS 1, 18 FILL='X' * Source: 'Mm.LKJNVCJXXXXXXXX'
 MOVE FROM 9 AT 1 TO 4 * Target: 'Mm.Mm.Mm.Mm.XXXXXX'

This behaviour provides a useful technique by which character data may be propagated within a field.

If the length of a character type target is greater than that of the source value, then the value is padded on the right to the length of
the target using the character specified by the FILL parameter. If the length of the target is less than the source value, then the
value is truncated on the right.

If the target variable or field definition is of numeric or numeric character data type, then the source value must have a numeric
interpretation. The numeric value is then converted to the data type of the target.

Chapter 4. SELCOPY Operations MOVE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 175

Parameters:

Source Element
Specifies the source element value.

If target is of numeric or numeric character data type, then the source element may be an @variable, an internal variable
(IntVar), an arithmetic expression (expr) or a constant, declared variable or field definition of numeric or numeric character
data type.

If target is of character data type, then the source element must be a constant, declared variable or field definition of
character data type. Use &DCLVar to obtain the unformatted value of a numeric DCLVar.

Each source element may be specified in one of the following formats:

FROM field_definition
FR

A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type. If target is of
numeric or numeric character data type, then the field definition must be of numeric or numeric character data
type.

If specified as a type 1 field definition but without a length, then the FROM and/or POS (field definition) keyword
must be used to distinguish the expr that follows as a field position value instead of the source element value
itself. The implied field length will be the same as target.

Unique to the MOVE operation, a type 3 (field_nATp) source element field definition may be split so that the field
position specification occurs after the target. To do this, the following must be true:

The type 3 source element field definition keyword FROM must be used instead of AT.1.
If target is also a type 3 field definition, keyword AT must be used instead of FROM.2.

e.g. The following use the same type 3 character field definitions for the source element and target, and are
functionally equivalent.

 MOVE 4 AT 3 TO 4 AT 24
 MOVE 4 FROM 3 TO 4 AT 24
 MOVE 4 TO 4 AT 24 FROM 3

constant
A constant representing a character, numeric or numeric character value.

If target is of numeric or numeric character data type, a hex character constant source value may be specified
with a numeric TYPE parameter to indicate its data type. The TYPE specification matches that used for a field
definition.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
Supported for numeric or numeric character target values only, @variable is the name of an @variable that has a
non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
Supported for numeric or numeric character target values only, IntVar is the name of a SELCOPY internal
variable.

expr
Supported for numeric or numeric character target values only, expr is an arithmetic expression.

TO target
References the variable or field to which the source element value will be moved. target may be specified as a declared
variable or a field definition of any type.

If specified as a Type 4 (field_pFMT) field definition, the target is of numeric character data type and so the source
element must also be of numeric or numeric character data type.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of the source element is implied.
ERROR 69 is returned if the source element also has no explicit or implicit length.

FILL char
PAD

Applicable only to a target of character data type, FILL defines the pad character (char) to be used when the length of
target is less than the length of the source element value.

The pad char may be specified as a quoted or hex character constant of length 1. The default is the blank character.

Chapter 4. SELCOPY Operations MOVE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 176

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

 DECLARE ULINE CHA(100) INI='-' * Underline "-".
 DECLARE BVAL BIN INI=333 FMT='SSSS9' * Binary integer.

 POS 1 = 'ABC568'
 POS 11 = X'0000,013C'
 @y = 55 !RC = 33 !LRECL = 245

 MOVE 99 AT ULINE TO ULINE+1 * Extend underline to full width.

 MOVE POS 1 LENGTH=6 TO POS 88 * Character move, target length=6.
 MOVE 11, 14 TO 50 AT 91 FILL="#" * Character padded move.
 MOVE 6 AT 1 TO 3 AT 16 * Character truncated move.

 MOVE @Y TO 5 AT 75 TYPE=P * @variable value.
 MOVE 4 AT 11 TYPE=P TO 4 AT 436 TYPE=B * Same as CVPB operation.

 MOVE BVAL TO 2 AT 155 TYPE=P * Binary->Packed Decimal field.
 MOVE @y+LRECL-RC TO BVAL * Same as BVAL = @y+LRECL-RC (267).

 MOVE @y+LRECL-RC @y+LRECL-RC+5 TO 301 * Source is type 2 field definition (field_p1p2).

 MOVE '62' TO 301 FMT='9999' * Numeric character source and target.
 MOVE 3 AT 4 TYPE=Z TO 321 FMT='zzz9' * Numeric source to character numeric target.
 MOVE 4 AT 11 TYPE=B TO 326 FMT='sss9' * Numeric source to character numeric target.
 MOVE 4 AT 11 TYPE=P TO 331 FMT='9999' * Numeric source to character numeric target.

Chapter 4. SELCOPY Operations MOVE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 177

MULTIPLY
Performs an arithmetic multiplication of two, signed numeric source values, the result of which is assigned to a target variable or
stored in a target field.

Syntax:

 (2)
 +-- INTO source_1 --+
 (1) (2) | |
>>-- MULTIPLY --+-- source_1 --- BY --- source_2 ---+-------------------+-+-->
 | | | |
 | +-- INTO target ----+ |
 | (3) |
 | (2) |
 +-- expr ------- BY --- source_2 ------ INTO target ------+
 (3)

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) source_1 must be of numeric or character numeric data type and may be specified as a declared variable or as
a field definition of type 2 (field_p1p2) or type 3 (field_nATp).
If INTO target is specified, source_1 may also be specified as a constant value or an arithmetic
expression (expr).

(2) source_2 must be of numeric or character numeric data type and may be specified as a constant, an arithmetic
expression (expr), a declared variable or as a field definition of type 2 (field_p1p2) or type 3
(field_nATp).

(3) target may be specified as a declared variable or as a field definition of type 2 (field_p1p2), type 3
(field_nATp) or type 4 (field_pFMT).

Synonyms:

MULTIPLY MULT

Description:

Variables and field definitions that constitute the source values and target of the MULT operation may be of different numeric or
character numeric data types.

When the source and target values are of different data types and/or if an arithmetic expression or constant value is specified as a
source field, then values are converted to a common numeric data type prior to performing the multiplication. The selected common
data type will have a precision and scale which is sufficient to manage the maximum precision and scale of the resultant value.

Any rational number having a fraction value, will be stored internally as a double precision (8-byte) floating point number.
Therefore, all fields in the operation will be converted to double precision floating point data type and then floating point arithmetic
used.

If a target or source value is expressed as a field definition without a TYPE parameter, the default data type attributed to that field
will be the same as the first field definition within the command syntax to have TYPE specified. If no such field definition exists, the
default data type is packed decimal integer (TYPE=P). e.g.

 MULT 4 AT 1 TYPE=C BY 4 AT 6 TYPE=B INTO 4 AT 11 * Default TYPE=C
 MULT 4 AT 1 TYPE=B BY 4 AT 6 TYPE=C INTO 4 AT 11 * Default TYPE=B
 MULT 4 AT 1 BY 4 AT 6 INTO 4 AT 11 TYPE=C * Default TYPE=C
 MULT 4 AT 1 BY 4 AT 6 INTO 4 AT 11 * Default TYPE=P

Rounding will occur as required on the fractional part of the resultant value based on the number of fractional digits (scale) of the
target definition. e.g. If the target variable or field has no scale, the result will be rounded to the nearest integer value by adding 0.5
and dropping the fractional portion.

Chapter 4. SELCOPY Operations MULTIPLY

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 178

Parameters:

source_1
Represents a rational numeric value (multiplicand) that is to be multiplied.

If no target is specified, then source_1 is also the target of the operation to which the resultant value (product) will be
assigned. If this is the case, source_1 must be a declared variable or a field definition.

BY source_2
Represents a rational numeric value (multiplier) by which the value specified by source_1 will be multiplied.

expr
Represents a numeric or character numeric constant, or an arithmetic expression to be used as the multiplicand value.

Note that source_2 may also be specified in this way. The distinction is made for expr and source_1 because source_1
must also be a valid target if INTO is not specified. Therefore, if expr is used, INTO target is mandatory.

INTO target
Identifies the declared variable or field definition that is the target of the operation and to which the resultant value
(product) is assigned. If the first source value is expr, then a target is mandatory.

If required, data conversion and decimal rounding will be performed on the resultant value before it is assigned to target.

Default is source_1.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

 DECLARE PI FLOAT INI=3.1416 * Declared variable.
 DECLARE AREA FLOAT * Declared variable.

 EQU OREC 1001 * Output record area.

 OPTION WORKLEN 2000 * Work area buffer.

 @RADIUS = 4 AT 11 TYPE=B * Assign @variable value.
 AREA = PI
 MULT AREA BY @RADIUS TIMES=2 * Area of a circle.

 MULT 4 AT 11 TYPE=B BY 8 AT 23 TYPE=P INTO 10 AT 101 TYPE=Z
 MULT 16.431 BY 20 INTO 8 AT 161 TYPE=F BIN
 MULT AREA BY 8 AT 161 TYPE=F BIN INTO OREC+27 FMT='S,SS9.99'

Return Codes:

0 Successful completion.

8 One of the following conditions has occurred:

target is of data type binary or floating point, and arithmetic overflow has occurred. i.e. Multiplication of 2
positive values or 2 negative values returns a negative result or multiplication of a positive value and a negative
value returns a positive result.

1.

The precision of target is not sufficient to contain the resultant value. Truncation has occurred with the loss of
significant digits.

2.

The first byte of a source or target field definition is within the work area but the last byte is located beyond the
end of the work area buffer. The length of the field is reduced so that the last byte of the field is the last byte of
the work area buffer.

3.

At least one source value is treated as being of packed decimal data type but the source data is invalid packed
decimal data.

4.

Chapter 4. SELCOPY Operations MULTIPLY

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 179

ODBC
Execute an SQL statement for an ODBC connection.

Syntax:

>>--- ODBC ----- sql_statement -->

 >--+------------------+--+-------------------+--+---------------------+----->
 | | | | | |
 +- SSN -- source --+ +- USER -- userid --+ +- ODBCPASS -- pass --+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

Currently supported only on Microsoft Windows platforms, the ODBC operation will execute an SQL statement in the ODBC
connected database. Selection processing will pause until control is passed back to the SELCOPY program following completion of
the statement execution.

Database table input is supported for a variety of proprietary database products using ODBC (Open Database Connectivity).

ODBC is an API (Application Programming Interface) that SELCOPY uses to access most of the popular databases supporting
SQL (Structured Query Language). Each DBMS (DataBase Management System) has its own driver which translates the SQL
statements as required.

Specification of a system name, ODBC userid and password is mandatory to identify the ODBC Data Source Name for the required
database and to establish the user's access authority to the database tables. These may be specified on the individual ODBC
operation or as environment options via the OPTION operation.

Parameters:

sql_statement
Specifies the SQL statement to be executed.

The select_clause value may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If sql_statement is a quoted character constant, a default of STOPAFT 1 is implied. This may be overridden by specifying
an explicit STOPAFT value.

For details on valid SQL statement syntax, please refer to SQL reference documentation for the DBMS to which the
ODBC connection will be made.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

ODBCPASS pass
OPASS
PASSWORD
PASSWD
PASS

Specifies the password (pass) to be used, together with the associated user name (see USER parameter), when
connecting to the data source via ODBC. Note that a user name and password is mandatory for connection to any data
source.

pass must be specified as a character constant and its specification will override the prevailing value set by the
ODBCPASS environment option.

SSN source
Specifies the ODBC data source name (source) to which the ODBC connection will be made. Note that specification of an
ODBC source name that has been defined to the local system, is mandatory for ODBC table input.

source must be specified as a character constant and its specification will override the prevailing value set by the SSN
environment option.

Chapter 4. SELCOPY Operations ODBC

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 180

STOPAFT int
If sql_statement is a quoted character constant, a default of STOPAFT 1 is implied. See common parameter STOPAFT for
details.

USER userid
Specifies the user name (userid) to be used, together with the associated password (see ODBCPASS parameter), when
connecting to the data source via ODBC. Note that a user name and password is mandatory for connection to any data
source.

userid must be specified as a character constant and its specification will override the prevailing value set by the USER
environment option.

TIMES int
See common parameter TIMES for details.

Example:

The following sample output is from a SELCOPY program that creates a table, populates the table rows, reads the rows back then
finally drops the table.

The example demonstrates use of the ODBC operation to execute a SQL CREATE, COMMIT, INSERT and DROP statements.

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2016/01/07 15:21 PAGE 1
 --- ---------------- --------

 option cblsqlog='c:\tmp\ssdb2m16.log' user=NBJ odbcpass=NBJ ssn=CBLAZOS
 option datawidth=80 worklen=2048

 ** Table Create **

 1. odbc "create table nbj.ssidemo \
 (\
 char char(20) not null with default, \
 int int not null with default, \
 date date not null with default, \
 time time not null with default \
)"
 2. odbc "commit"

 ** Table Row Insert **
 3. odbc "insert into nbj.ssidemo values ('First row ',1,current date,current time)"
 4. odbc "insert into nbj.ssidemo values ('Second row',2,current date,current time)"
 5. odbc "insert into nbj.ssidemo values ('Third row ',3,current date,current time)"
 6. odbc "commit"

 ==readloop== ** Table Row Print **

 7. read ssidemo sql="select * from nbj.ssidemo"

 if eof ssidemo
 8. then goto drop

 9. print
 10. goto readloop

 ==drop== ** Table Drop **

 11. odbc "drop table nbj.ssidemo"
 12. odbc "commit"

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 1 1 9 First row |1 |2016-01-07|15:21:49| 53
 2 2 9 Second row |2 |2016-01-07|15:21:49| 53
 3 3 9 Third row |3 |2016-01-07|15:21:49| 53
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 1 ODBC create table nbj.ssidemo (char char(20) not null with de ...
 2 1 ODBC commit
 3 1 ODBC insert into nbj.ssidemo values ('First row ',1,current da ...
 4 1 ODBC insert into nbj.ssidemo values ('Second row',2,current da ...
 5 1 ODBC insert into nbj.ssidemo values ('Third row ',3,current da ...
 6 1 ODBC commit

 =readloop=
 7 3 READ SSIDEMO 2048 53 F 3 select * from nbj.ssidemo
 8 1
 9---10 3

 =drop=
 11 1 ODBC drop table nbj.ssidemo
 12 1 ODBC commit

 ** SELCOPY/WNT 3.30.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 12. ODBC SQL statement execution.

Chapter 4. SELCOPY Operations ODBC

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 181

OPEN
Explicitly open a data object for input or output.

Syntax:

>>-- OPEN --------+--- | Input Parms | -------+----------------------------->
 | |
 +--- | Output Parms | -------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

The OPEN operation will open the data object. If a specific (or implied) fname assigned via a READ (or CAT) operation matches
that assigned to an OPEN operation which follows, then the open will be for input. Otherwise, the data object is opened for output.

By default, open of a data object referenced by a variable name or field definition on an OPEN, READ or WRITE operation, will be
deferred until the operation is executed at selection time. Otherwise, in the absence of an explicit OPEN, a data object referenced
by a character constant will be opened before selection time processing. An input data object is opened when the control statement
containing the READ operation is processed during control statement analysis. An output data object is opened once all control
statements have been analysed.

Regardless of the method used to reference the data object, the OPEN operation may be used to defer the open of an input or
output object until the READ, WRITE or OPEN is executed during selection time processing.

Since open for input occurs immediately on statement analysis of a READ operation, then, in order to defer the open, either the
DEFER parameter should be specified on the READ or the OPEN operation for the same fname must occur before the READ
operation.

If the object referenced by fname is already open when the OPEN operation is executed, then the it will be closed and then
re-opened. This may be desirable if data is to be re-processed sequentially from the start of the object. (See example 1. below)
Other instances where OPEN may be useful include:

To reuse a file name (fname) for multiple input or output data objects referenced by a variable name or field definition.•

To write an empty file (e.g. z/OS VSAM data set) for a file object with fileid referenced by a variable name or field
definition. Once opened for output using the OPEN operation, the file can be closed without ever having been written to.
This will clear the file data and write an end-of-file marker.

•

Parameters specified on the OPEN operation are those supported by a READ operation for open or data retrieval, or those
supported by a WRITE operation for open or data output. Unless overridden by a subsequent READ or WRITE operation on fname,
these parameters apply to all subsequent I/O operations on fname.

Parameters:

Input Parms
In addition to a specified or implicit fname, OPEN for an input data object supports any of the Object Open or Data
Retrieval parameters supported by the READ operation as follow.

fileid
BDW / NOBDW
BLKSIZE
DEFER
DIR
DIRDATA
DIRTYPE
DSN
DSNPFX

EOL
ESDS
FILL
FMT
HEADER
KSDS
LIST
LRECL
ODBCPASS

RAW
RDW / NORDW
RECFM
RRDS
SELECT
SEP
SORT
SORTDIR
SQL

SSN
SUBDIR
TABS
TABLE
UPD
USER
VSAM
WHERE

See operation READ for details on parameter usage and descriptions.

Output Parms
In addition to a specified or implicit fname, OPEN for an output data object supports any of the Object Open or Data
Output parameters supported by the WRITE operation as follow.

Chapter 4. SELCOPY Operations OPEN

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 182

fileid
APPEND
BDW / NOBDW
BLKSIZE
DEFER
DSN
DSNPFX

EOL
ESDS
FMT
FILL
KEYLEN
KEYPOS
KSDS

LRECL
ODBCPASS
RDW / NORDW
RECFM
REUSE
RRDS
SSN

TABLE
TRUNC / NOTRUNC
USER
VSAM
WIN

See operation WRITE for details on parameter usage and descriptions.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of OPEN for the same data object is unnecessary and a waste of resource, therefore, TIMES should
never be used on OPEN. See common parameter TIMES for details.

Example:

In the following example, records belonging to each member of a job library are read and compared against those belonging to
a single job member master copy. The master copy is re-opened for each new member in the job library in order to start the
data comparison from the first record. This processing proceeds until a matching job member is found or all members in the
library have been compared.

 EQU YES 1 * Flag setting on.
 EQU NO 0 * Flag setting off.

 @MATCH = NO STOPAFT=1 * Initialise match flag to "No".

 READ INDIR DSN='NBJ.JCL(*)' DIRDATA WORKLEN=1000 * JCL members.

 IF DIR * Library directory.
 THEN IF @MATCH = YES * All records match?
 THEN PRINT '1ST MATCHING MEMBER: ' FROM 8 AT 901 * Print member name.
 THEN GOTO EOJ * End-of-job.

 ELSE MOVE 8 AT 1 TO 901 * Next member name.
 THEN OPEN INMAST DSN='NBJ.MASTER.JCL(BL02)' * Re-open master.
 THEN GOTO GET * Get the data record.

 READ INMAST INTO 501 * Read next master record.

 IF EOF INMAST * If master end-of-file...
 OR POS 1 POS 501 LENGTH=LRECL * ... or records don't match.
 THEN @MATCH = NO * Set match flag to "No".
 THEN FLAG EOM * Flag end-of-member.
 ELSE @MATCH = YES * Otherwise, match flag is "Yes".

Chapter 4. SELCOPY Operations OPEN

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 183

OPTION
Set environment options that define characteristics of the SELCOPY program execution.

Syntax:

 +------------+
 v |
>>-- OPTION -------+------------+--><
 | |
 +-- option --+

Synonyms:

OPTION OPT OPTIONS

Description:

The OPTION operation sets the value of one or more SELCOPY environment options and is classed as one of the control
statement analysis operations.

Unless documented otherwise, the prevailing value of an individual environment option may be set more than once during control
statement analysis. This may occur as a result of analysis processing of another OPTION, READ, WRITE, PRINT or LOG
operation which also specifies a value for the option parameter (e.g. PAGEDEPTH). However, on completion of control statement
analysis processing, the prevailing value of an option will remain constant throughout selection time processing and until
end-of-job.

Most environment options have a default setting. However, with the exception of those options that can only be specified within
program control statements, option values may be set globally so that they become the default for all SELCOPY programs. This is
achieved by specifying one or more OPTION operations in the SELCNAM options file.

Options that specify unique SELCOPY licensing details, must be included in the SELCNAM file for successful operation of a
SELCOPY program. Specification of any of these options in program control statements is invalid and will return a control analysis
error. These options are as follow.

PASS RANGE SITE

Similarly, the following environment options are invalid when specified in the SELCNAM file and so are only supported within the
program's control statements.

DSNPFX HEAD REPORT WORKLEN

The following options may be specified in both the SELCNAM file and program control statements.

ABTRAP
BANNER
CALLTYPE
CBLSQLOG
DATAWIDTH
DEFAULTFP
DEFDIR
DIRTYPE

DUMPALL
DUMPENC
ENVFAIL
ENVVAR
ERRLIM
FILL
LIBNAME
MFC

NOPRINT
ODBCPASS
PAGEDEPTH
PAGEWIDTH
PRINTABLE
PRRECLEN
PRTCTL
PRTSUM

RC_KEYNF
RDW
SEP
SORTDIR
SSN
SUBDIR
UNPRINTABLE
USER

Use of the OPTION operation keyword is optional in the following special cases:

Report Output

SELCOPY report output is triggered by the presence of option REPORT which, if the first value specified on the OPTION
operation, may be specified with or without the OPTION keyword. Other options relating to report output may be specified
following the REPORT option.

 +- OPTION --+
 | |
>>--+-----------+-- REPORT ---+-->
 | |
 +- HEAD -- header --+

 >---+--------------------+--+--------------------+--------------------------><
 | | | |
 +- PAGEDEPTH -- int -+ +- PAGEWIDTH -- int -+

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 184

SELCOPY List Diagnostic Output

By default, SELCOPY list output includes diagnostic output which includes print of the input control statements with their
assigned selection id numbers, and also a summary block containing an execution count for each selection.

Display of this diagnostic output may be switched off by options set in the SELCNAM file, but may be re-activated and
deactivated within the program control statements. When specified in the program statements, these options may be
specified with or without the OPTION keyword.

 (1)
 +- OPTION --+ +- PRTCTL --+ +- PRTSUM 2 --+
 | | | | | |
>>--+-----------+-----+-+-----------+--+-------------+-+---------------------><
 | | | | | |
 | +- NOPCTL --+ +- NOPSUM ----+ |
 | +- PRTSUM 0 --+ |
 | | | |
 | +- PRTSUM ----+ |
 | +- PRTSUM 1 --+ |
 | | | |
 | +- PRTSUM 3 --+ |
 | |
 +--- NOPRINT --------------------+

Syntax Notes:

(1) Keyword OPTION is mandatory if option PRTSUM is specified.

Parameters:

ABTRAP ON | OFF
TRAP ON | OFF
NOTRAP

Controls whether SELCOPY's default abnormal end interrupt handling is enabled or disabled.

If ABTRAP is set ON, SELCOPY will intercept any abnormal end situation and terminate the job quietly, suppressing the
default system action of producing diagnostic information. For Windows and POSIX environments, this includes
interruption of the program execution by the user.

Unless unset by the SELCOPY command option -notrap , the default setting for ABTRAP is ON.

BANNER | NOBANNER
BAN | NOBAN

Controls whether or not the SELCOPY banner is written to log output (STDERR or SYSOUT) when SELCOPY is started.
e.g.

 SELCOPY/MVS 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/17 16:19

The SELCOPY banner line is not written until control statement analysis is completed and so the last setting for BANNER
or NOBANNER will be obeyed. However, if NOBANNER is set and an error is detected during control statement analysis,
option BANNER is set and the banner line is logged before the error message.

Default is BANNER.

CALLTYPE DIRECT | VIA_SLCCALL
Applicable only to CALL operations on Windows and Unix systems. CALLTYPE controls the type of linkage used by all
routines executed via CALL operations in the SELCOPY program. The options are as follow:

DIRECT
This the recommended option. Routines in the run-time shared library will be called directly with a single
argument which is a pointer to an array of character string pointers. i.e. (char **list)

The name of the shared library is the prevailing value for the LIBNAME environment option.

VIA_SLCCALL
This option should be used for legacy (pre version 2.09) SELCOPY jobs. Routines are called from the
user-written function, slccall, which exists in the a shared library named as follows:

slccall.dll for Microsoft Windows.•
slccall.so for most UNIX.•
libselc.sl for HP Unix.•

The linkage for the slccall function is: (char *nam, char **list)
The first argument is a pointer to the null terminated name of the routine to be called, and the second is a pointer
to an array of character string pointers.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 185

The slccall function must then call the named routine passing the parameter list array and/or any other
arguments required by the routine linkage.

When the first CALL operation is processed during control statement analysis, the run-time shared library with the library
name determined by the CALLTYPE and, if applicable, LIBNAME options, is dynamically loaded and thereafter used as
the source for all routines executed by CALL operations. i.e. SELCOPY supports dynamic load of only one run-time
shared library during program execution.

Although not recommended, it is possible to change the setting for CALLTYPE so that different linkage is used on CALL
operations within the same SELCOPY program. Note, that regardless of the linkage used, the shared library that was
dynamically loaded during control statement analysis, will be used for lookup of all called routines.

The shared library must exist in a directory included in the system library path. The library path is identified by system
environment variable PATH in Microsoft Windows, LIBPATH in IBM AIX, and LD_LIBRARY_PATH in most other Unix
environments.

The default CALLTYPE option is DIRECT.

CBLSQLOG fileid
LOGSQL
SQLLOG

Applicable to ODBC table input and output, CBLSQLOG indicates to SELCOPY that a log file is to be created containing a
record of calls made to the ODBC Driver Manager.

This may be particularly useful since SQL error messages can sometimes be very long, resulting in truncation when
displayed in the SELCOPY list output. However, no truncation occurs when written to the CBLSQLOG file or when the
message is written to the terminal at execution time.

The CBLSQLOG option may also include specification of fileid, the fileid path of a new or existing file to which the
SELCOPY ODBC log will be written. fileid must be quoted character constant identifying a Microsoft Windows fileid clause
specification.

If CBLSQLOG is specified without fileid, the default is "selcSQL.log".

DATAWIDTH int
DW

Applicable only to PRINT and LOG operations where the format applied to the output data is not TYPE S (system) or
TYPE D/DX (dump), DATAWIDTH specifies the width of the printed data column in the print block. i.e. the length of printed
data to be written to each line of the SELCOPY list output.

In addition to the OPTION operation, a value for DATAWIDTH may be specified on a LOG, PLOG or PRINT operation.
Therefore, the actual value assigned to the DATAWIDTH option is established by the last OPTION, LOG, PRINT or PLOG
operation within the control statements on which DATAWIDTH is specified. All other DATAWIDTH value specifications are
overridden by this last specification.

This DATAWIDTH value will apply to all PRINT and LOG operations executed during the SELCOPY program run.

The maximum value is 4096, the minimum value is 10 and the default value is 100.

DEFAULTFP BIN | HEX | NAT
DEFFP
DFLTFP

DEFAULTFP specifies the floating point style to be used when interpreting floating point field definitions or declared
variables for which no style has been specified. e.g. for a CVFx or CVxF operation.

The options are as follow:

BIN IEEE-754 Base 2 Binary style.
HEX IBM Base 16 Hexadecimal style.
NAT Native style (BIN or HEX) for the machine architecture.

On z/OS and z/VM CMS, the native floating point style is HEX. Otherwise, the native style is BIN.

Beware that the native floating point style is used by SELCOPY for all of its floating point arithmetic and conversion. Use
of the non-native style will involve data type conversion and cost CPU time.

Default is NAT.

DEFDIR path
DEFAULTDIR
DFLTDIR

Applicable only to Windows and POSIX environments, DEFDIR identifies path as the work (current) directory to be used
by SELCOPY for the duration of the program execution only. Note that no change is made to the system's current working
directory.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 186

The path value may be an absolute directory path or one relative to the system's current working directory, and must be
specified as a quoted character constant or an unquoted literal. Character case will be preserved even if unquoted,
however, beware of ending an unquoted path with "\" (backslash) which will be treated as the statement continuation
character if the last non-blank character on the input control record.

path may also include references to environment variable and/or parameter variable substitution symbols. However, if
using an equated symbol for path, the equated value should be specified as a quoted character constant in order to
maintain character case. e.g.

 ** Windows Example:
 opt defdir 'c:\Tmp'
 read abcfile.txt * Input file: "c:\Tmp\abcfile.txt"

 ** UNIX Example: (System current working directory is "/home/NBJ")
 opt defdir Selc/out * Mixed case will be respected.
 write test/defdir.txt * Output file: "/home/NBJ/Selc/out/test/defdir.txt"

The default work directory is used to establish the location of a fileid specified without a path or with a path relative to the
work directory. This fileid may be specified on an I/O or INCLUDE operation.

The DEFDIR option must not be set on a statement following one containing an I/O operation. If so, ERROR 169 will be
returned on the I/O operation regardless of whether the fileid of the input or output file references an absolute file path.

Default is the system's current working directory at the time the SELCOPY program was started.

DIRTYPE attributes
TYPEDIR

Applicable to directory record input via the READ DIR or READ DIRDATA operation for Windows and Unix-like file
directories only.

The DIRTYPE option specifies the types of directory entries to be selected for processing based on the attributes of the
files they reference. Attribute codes are as follow:

Code File Attribute required
. The working "." and parent ".." directory entries.
R Read-only.
H Hidden.
S System.
V Volume-Id.
D Subdirectory.
A Archive. (Amended file.)
Y Symbolic Link. (UNIX only.)
N Normal. (No attribute flags set.)

Option keyword ALL may be specified to indicate that all directory entries are to be included.

Unless ALL is specified, multiple DIRTYPE attribute codes may be specified as an unquoted literal or as a quoted
character constant. Blanks and comma characters may be specified and are ignored if supplied as a quoted character
constant.

The default DIRTYPE attribute values are 'A,N,R' which may be overridden by a DIRTYPE specification on a READ
operation.

DSNPFX YES | NO
USERID
UID

Applicable only to z/OS where an INCLUDE or I/O operation references an unquoted fileid which is a data set name
(DSN) belonging to a PDS/PDSE library or a sequential or VSAM data set. The fileid reference may have been specified
as an unquoted literal or an unquoted value identified by a declared variable or field definition.

Valid only in program control statements, OPTION DSNPFX determines whether an attempt will be made to open the data
set using one of the following prefixes applied to the unquoted data set name:

The ACF userid assigned to the job if running in batch.◊
The current TSO prefix definition if running in a TSO/E environment.◊

On a z/OS system, SELCOPY attempts to open a file using a fileid which is established in the following order of
precedence. If the open fails for that fileid, then, unless otherwise specified, SELCOPY will re-attempt an open using a
fileid established by the next definition in the sequence order.

Whether or not it is quoted, if the specified fileid is not a valid z/OS DSN, it is treated as a Unix-like HFS/ZFS
fileid. If the open fails for this file, no further attempt will be made to open a file using a different fileid.

1.

If the fileid is quoted, it is treated as an actual DSN with no prefix applied.2.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 187

If the fileid is unquoted, the DSNPFX option value takes effect as follows:

If DSNPFX YES is set, the DSN prefix will be applied to fileid. If the open fails, then unless the I/O
operation is READ with an explicit DSNPFX YES parameter specified, the open is re-attempted using
option DSNPFX NO.

1.

If DSNPFX NO is set, no DSN prefix will be applied to fileid.2.

3.

The fileid is treated as a Unix-like HFS/ZFS fileid.4.

The default is DSNPFX NO which may be overridden by a DSNPFX YES (or DSNPFX) specification on an I/O operation.

DUMPALL YES | NO
Applicable to the LOG, PLOG and PRINT operations that output data in dump (TYPE D or DX) format.

For a group of consecutive lines of dump format output that contain identical data, DUMPALL determines whether or not
the second and subsequent lines of the group are to be condensed. If so, these lines are displayed as a single line
containing the literal "=same=", followed by a parenthesised count of the number of condensed lines. e.g.

 INPUT SEL SEL
 RECNO TOT ID.
 ----- --- ---
 0 1 11 190
 0000 206C696E 65732073 75707072 65737365 | lines suppresse|
 0010 642E2020 20202020 20202020 20202020 |d. |
 0020 20202020 20202020 20202020 20202020 | |
 0030 =same= (7 lines) : :
 00A0 20202020 20202020 44696666 20646174 | Diff dat|
 00B0 612E2020 20202020 20202020 2020 |a. |

DUMPALL YES will output all line containing duplicate data, DUMPALL NO will condense these lines. Note that
DUMPALL is a synonym for DUMPALL YES.

The default is DUMPALL NO which may be overridden by a DUMPALL specification on a PRINT operation.

DUMPENC char_string
Applicable to the LOG, PLOG and PRINT operations that output data in a dump format which includes character
representation of the data. (i.e. TYPE D)

DUMPENC specifies char_string, a character constant of length 1 or 2, which identifies the characters used to enclose the
character representation of dump format output.

The first (or only) character defines the enclosing character used on print lines that have not been condensed to
a single line. (See option DUMPALL above).

1.

The second character defines the enclosing character used on print lines that have been condensed to a single
line.

2.

The default DUMPENC characters are "|" (or symbol) and ":" (colon) which may be overridden by a DUMPENC
specification on a PRINT operation.

ENVFAIL char_string | CANCEL | NULL | SAME
If option ENVVAR is set, then ENVFAIL defines the action taken if a control statement makes reference to an environment
or parameter substitution variable that has not been assigned.

The possible options are:

char_string A character constant that will be substituted in place of the variable name.
CANCEL Cancel the execution. (See the GOTO CANCEL operation.)
NULL A null string will be substituted in place of the variable name.
SAME The variable name will not be substituted but will remain unchanged in the control statements.

If required, option ENVFAIL may be specified with different values throughout the input control statements to change the
action taken for failed variable substitution in the statements that follow.

Default is ENVFAIL SAME.

ENVVAR | NOENVVAR
Controls whether or not variable substitution of environment and parameter variables is activated.

If required, option ENVVAR and NOENVVAR may be specified throughout the input control statements to respectively
activate and deactivate variable substitution for the statements that follow.

The default setting is ENVVAR, i.e. substitution is activated.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 188

ERRLIM int
ERRMAX

ERRLIM specifies int, a non-zero integer numeric constant that identifies the number of errors that may be detected and
reported during control statement analysis before the run is terminated.

Once this error limit threshold has been reached no further control statement analysis takes place and, therefore, any
errors that exist in subsequent, unprocessed statements will not be detected.

The default value for ERRLIM is 10.

FILL char
PAD

The FILL option specifies char, a character constant of length 1. The FILL option may be set within the program control
statements and the SELCNAM file where they have different interpretations.

If set in the program control statements, then all characters in a defined work area (option WORKLEN) will be
initialised as char.

◊

If set in the SELCNAM file, then char will be used to pad a short input record to the length of the last record
previous read from the same data object. (See parameter FILL on the READ operation for more detail).

◊

The default FILL character is blank in both cases.

HEAD header | NO
HD
H

Valid only in program control statements, OPTION HEAD specifies header, a quoted character constant which identifies
the header string to be displayed in the header line of each page in the SELCOPY list output that follows.

The header value will replace the company_name as specified by the option SITE in the SELCNAM file. The maximum
length of the header text displayed in the header line is 56 characters. If a header value longer than 56 characters is set,
then it is truncated without warning.

HEAD NO may be set if the header text within the header line is to be suppressed. Note that this does not affect display of
the time, date and page number.

The HEAD option is one which may be specified following option REPORT without the OPTION operation keyword. The
header text may be referenced and, if necessary, updated during selection time processing using the internal field
definition located at position HEAD.

LIBNAME library
Applicable only to CALL operations on Windows and Unix systems where environment option CALLTYPE is set to
DIRECT. LIBNAME identifies library, a quoted character constant which identifies the name of the shared library in which
all routines referenced by a CALL operation may be found.

Unless the default is to be used, the LIBNAME option should set before any statements containing a CALL operation.
When the first CALL operation is processed during control statement analysis, the shared library with a name equal to the
prevailing value for library, is dynamically loaded and then used as the source for all routines executed by subsequent
CALL operations. Any change to the LIBNAME library following processing of the first CALL operation, will have no effect.

The shared library must exist in a directory included in the system library path. The library path is identified by system
environment variable PATH in Microsoft Windows, LIBPATH in IBM AIX, and LD_LIBRARY_PATH in most other Unix
environments.

The default value for library is libselc.dll for Microsoft Windows and libselc.so for Unix systems.

MFC
Indicates that VSAM related parameter keywords on I/O operations are to imply use of the Micro Focus file handler. This
option is ignored on z/OS and z/VM CMS where IBM VSAM is used.

NOPRINT
NOP

Equivalent to specifying both environment options NOPCTL and NOPSUM. (See PRTCTL and PRTSUM respectively)

If specified as the only option value, NOPRINT may be specified without the OPTION keyword. Furthermore, NOPRINT is
a common parameter which may be specified on any operation or assignment statement.

ODBCPASS pass
OPASS

Applicable to ODBC table input and output, ODBCPASS specifies the password (pass) used to connect to the data source
via ODBC. pass must be specified as a character constant.

The pass value may be overridden by specification of the ODBCPASS parameter on a READ or WRITE operation.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 189

PAGEDEPTH int
PD

Specifies the depth (number of lines) of each page of the SELCOPY list output.

When a line written to the SELCOPY list output exceeds the PAGEDEPTH threshold, then, unless the prevailing value for
environment option HEAD is NO, the page headers will be written at the start of the new page. The exception is when a
PRINT TYPE=S (system print) operation is executed. For system print output, the PAGEDEPTH value is ignored and
output to a new page is only achieved by specifically including ASA character 1 in the first position of the printed text.

In addition to the OPTION operation, a value for PAGEDEPTH may be specified on a LOG, PLOG or PRINT operation.
Therefore, the actual value assigned to the PAGEDEPTH option is established by the last OPTION, LOG, PRINT or
PLOG operation within the control statements on which PAGEDEPTH is specified. All other PAGEDEPTH value
specifications are overridden by this last specification.

However, while control statements are being analysed, SELCOPY writes lines to the list output. Therefore, during control
statement analysis only, the depth of each page is volatile and is determined by the prevailing PAGEDEPTH value as
established by the control statements analysed thus far. i.e. The page depth threshold for the current output page will
change when another PAGEDEPTH parameter is processed by an, as yet unanalysed, control statement.

The maximum value is 2,147,483,647 (X'7FFF,FFFF'), the minimum value is 10 and the default value is 58.

PAGEWIDTH int
PW

Specifies the width of each page of the SELCOPY list output.

In actual fact, the PAGEWIDTH value affects only those lines of the list output that contain page headers and dump format
print output (TYPE D/DX). All other lines of the list output (control statements, print block data, summary block data,
warning messages and footer text) are unrestricted by the PAGEWIDTH value.

Within each page header, the current date, time and page number, are right adjusted at the PAGEWIDTH value. If the
PAGEWIDTH value is sufficiently small, then these header items will overlap and so overwrite the title, which is left
adjusted within the header line.

For PRINT or LOG operation dump format output, the length of the output line and, therefore, the length of printed or
logged data represented by that line, is restricted by the PAGEWIDTH value. See description of TYPE=D in the print block
output for details on how PAGEWIDTH affects dump format print.

In addition to the OPTION operation, a value for PAGEWIDTH may be specified on a LOG, PLOG or PRINT operation.
Therefore, the actual value assigned to the PAGEWIDTH option is established by the last OPTION, LOG, PRINT or PLOG
operation within the control statements on which PAGEWIDTH is specified. All other PAGEWIDTH value specifications
are overridden by this last specification.

However, while control statements are being analysed, SELCOPY writes lines to the list output. Therefore, unless option
NOPRINT or NOPCTL is set on the first control statement, at least one page header will be written before selection time
processing starts. The length of each page header is determined by the prevailing PAGEWIDTH value established by the
control statements analysed thus far. i.e. PAGEWIDTH values set by subsequent, as yet unanalysed, control statements
will not affect the output header.

For z/OS and z/VM CMS only, the PAGEWIDTH value includes the column reserved for ASA print characters. Therefore,
the length of page header text that would actually be printed by a physical printer device, is one less than the
PAGEWIDTH value.

The maximum value is 156 and the minimum value is 66. The default value is 132 for POSIX environments and 133 for
z/OS and z/VM CMS environments.

PASS pass
Valid in the SELCNAM file only, OPTION PASS specifies pass, an 8-byte hex character constant containing the
SELCOPY licence key password.

Together with options SITE and RANGE, PASS is one of the licence environment options required for successful
execution and is validated by SELCOPY when the program starts. The pass value must exactly match that provided by
Compute (Bridgend) Ltd. If not, SELCOPY will terminate with ERROR 153.

PRINTABLE char_string
Nominates character code points that are to be treated as printable by the LOG, PLOG and PRINT operations.

The SELCOPY print/log types that involve interpretation of code points as being printable or unprintable are: character
(C), dump (D) and mixed character and hex (M, MC or MP). For these print/log types, only the code points identified as
being printable will be passed without translation to the output stream.

The char_string is a hex character constant representing one or more character points to be treated as printable. e.g. To
set as printable the US EBCDIC (code page 037) characters "[" (left bracket) and "]" (right bracket) at code points x'BA'
and x'BB' respectively, set PRINTABLE X'BABB'.
Note that, for UK EBCDIC (code page 285), "[" and "]" are at code points x'B1' and x'BB' respectively.

Default printable code points are illustrated by the description of TYPE C output for the PRINT operation.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 190

PRRECLEN YES | NO
Specifies whether or not the RECORD LENGTH column is to be displayed in the SELCOPY list output Print Block.

PRTCTL | NOPCTL
Specifies whether or not the SELCOPY list control statement diagnostic output is active.

Output of control statements to the SELCOPY list occurs as each statement is read and processed during control
statement analysis.

By default, PRTCTL is set indicating that control statement output is active. If required, options NOPCTL and PRTCTL
may be positioned throughout the input control statements to suppress and re-activate output of the statements that
follow.

Note that, if an error is detected during control statement analysis, PRTCTL is automatically set so that the error, and the
statement to which it applies, is displayed in the list output.

If specified as the only option value other than NOPSUM, PRTCTL and NOPCTL may be specified without the OPTION
keyword. Furthermore, NOPCTL is a common parameter which may be specified on any operation or assignment
statement.

PRTSUM int | NOPSUM
SUMPRT int | NOPTOT

Specifies whether or not the SELCOPY list output summary (totals) block will be generated and written at end-of-job.
PRTSUM (or SUMPRT) activates summary block output, whereas NOPSUM (or NOPTOT) suppresses it.

Option PRTSUM may also specify int, a value of 0, 1, 2 or 3, which defines the level of detail displayed in the summary
block. PRTSUM 0 is equivalent to NOPSUM.

PRTSUM 1
Separate summary block entries will be generated for READ, CAT, WRITE, INSERT, UPDATE and DELETE
operations and the operation keyword displayed with the data object reference information. All other operations
may be grouped together if the executed count (SELTOT) is the same, and displayed on a single summary block
entry. e.g.

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 22 READ SSDYN07 20 10 FB 3 C:\djh\cc\slc\SSDYN07.INP
 2 3
 3 22
 4 3
 5----6 1
 7----9 3

PRTSUM 2
As for PRTSUM 1, but additionally:

All user labels are also reported in the summary, with a preceding blank line.1.

A separate entry exists for RETURN operations. Unless a summary block comment is specified
following the RETURN operation (i.e. text following *>), the RETURN keyword will be displayed as
=ret=. e.g.

2.

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 =rdrtn=
 1 22 READ SSDYN07 20 10 FB 3 C:\djh\cc\slc\SSDYN07.INP
 2 3
 3 22 =ret=

 =xxrtn=
 4 3
 5----6 1
 7----9 3 =ret=

PRTSUM 3
As for PRTSUM 2, but additionally:

A separate entry exists for each operation and assignment statement (including IF/AND/OR operations).
Multiple operations or assignments having the same selection count are no longer grouped together and
reported as a single summary block entry.

1.

Comments on all operation or assignment statements are reported following the operation keyword
whether or not it is a summary block comment. e.g.

2.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 191

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 =rdrtn= * Comment data on a label.
 1 22 READ SSDYN07 20 10 FB 3 C:\djh\cc\slc\SSDYN07.INP
 6 74 READ FILE1 2048 128 U 75 C:\djh\cc\slc\LST\SSPARM11
 7 75 @l1= * Comment data on a statement.
 if * Comment data.
 2 3 t do * Comment data.
 3 22 =ret= * Return from a subrtn.

 =xxrtn= * Comment data on a label.
 4 3 pr * Comment data on a statement.
 if * Comment data.
 5 1 t move * Comment data.
 6 1 t move * Comment data.
 7 3 move * Comment data.
 8 3 pr * Comment data.
 9 3 =ret= * Return from a subrtn.

 =xyz_label= * Just a fabricated example.
 if * If something or other.
 a
 269 0 t mod * Change something.
 270 0 t rc= * Set return code.

See description of the Summary (Totals) Block for more detail on the affects of PRTSUM.

If specified as the only option value other than NOPCTL, NOPSUM (or NOPTOT) may be specified without the OPTION
keyword. Furthermore, NOPSUM is a common parameter which may be specified on any operation or assignment
statement.

The default setting is PRTSUM 2. However, a specification of option PRTSUM with no int value will default to PRTSUM 1.

RANGE date_range
Valid in the SELCNAM file only, OPTION RANGE specifies date_range, a quoted character constant containing one of the
operational date ranges for which SELCOPY is licensed.

Together with options PASS and SITE, RANGE is one of the licence environment options required for successful
execution and is validated by SELCOPY when the program starts. Each specification of a RANGE option must reference a
date_range that exactly matches that provided by Compute (Bridgend) Ltd. If not, SELCOPY will terminate with ERROR
153.

The date_range specification is in the form ('yyyy/mm/dd-yyyy/mm/dd'), i.e. two ISO dates separated by a "-"
(hyphen/minus sign). This identifies the inclusive, start and end dates of the operational date range. If an attempt is made
to execute SELCOPY outside the operational date ranges, ERROR 123 (expiry) is returned.

More than one RANGE date_range option may be specified to identify a number of contiguous or non-contiguous date
range windows in which SELCOPY will run. Multiple date_range values are cumulative and must be specified if provided
as part of the installation's licence key.

RC_KEYNF int
Applicable to direct read of input records via a READ operation with parameter KEY, KGE, RBA or REC.

RC_KEYNF specifies int, an integer value in the range 0 to 254 which represents the SELCOPY return code to be set
when a direct read returns a record not found condition. In addition to this return code, the following 25 character record
will be returned in the work area or input buffer area.

 --- KEY/REC NOT FOUND ---

If RC_KEYNF 0 is set, the prevailing SELCOPY return code is unchanged and no indication of the failed read is reported
against the selection identifier in the summary.

If RC_KEYNF is non-zero, the return code will be set as requested. However, for the purpose of identifying the failure in
the summary report, the selection identifier will be flagged as having set return code 8 indicating a minor error condition.

Default value is 0.

RDW | NORDW
Applicable only to input of variable length record format (RECFM V, VB, V2, V3 and MFV) files.

RDW and NORDW indicate whether or not the Record Descriptor Word (RDW) is to be included as part of the data
belonging to each input record. If option RDW is set, the length of the RDW is included in the length value assigned to
variable LRECL when a record is read.

Beware that, if RDW is specified for a variable length file which is also the prime input object, then, for any WRITE
operation, the length of the RDW field is added to the FROM parameter address and deducted from the output data
length.

The setting may be overridden by specification of parameter RDW/NORDW on a READ operation.

For z/OS systems, the default is set by CBLNAME option SRDW= which is set to Yes (RDW) by default. Otherwise, the
product default is NORDW.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 192

REPORT
R

Valid in program control statements only, OPTION REPORT activates SELCOPY report output for printed data. Report
output has the following attributes:

All print block headers and footers are suppressed.1.

All print block column values, other than the printed data, are suppressed.2.

On z/OS and z/VM CMS, each row of printed data starts in the second column of the list output. SELCOPY will
output ASA print control characters in the first column. On all other platforms, printed data starts in the first list
output column.

3.

Rows of printed data do not wrap onto the next line of the list output.4.

A new page is started and the page number (referenced by internal field UXPGNO) is reset to page 1 on
execution of the first PRINT operation.

5.

The Control Statements and Summary (Totals) Block are automatically printed on separate pages of the list
output.

6.

See also environment options HEAD, PAGEDEPTH and PAGEWIDTH which also have an effect on the printed report
output.

If specified as the first option value, REPORT may be specified without the OPTION keyword.

 1SELCOPY/MVS 3.30 at CBL - Bridgend UK (Internal Only) 2015/11/16 15:56 PAGE 1
 --- ---------------- --------

 report head="Extent Usage on Volume: CBLME1"

 1. read inlst list='LX CBLME1' header

 if eof inlst
 2. then space 1

 3. tran pos fhdr+lrecl-1, fhdr+lrecl+lrecl-1 \
 '.,1234567890' '------------' stopaft=1
 4. print

 1Extent Usage on Volume: CBLME1 2015/11/16 15:56 PAGE 1
 ------------------------------ ---------------- --------

 Vol CC HH Dsn Org Alu Trks Seq Nxt LoCCHH HiCCHH
 ------ ---------- ----- -- --- - --------- --- --- -------- --------
 CBLME1 0 0 **Label Area** T 1 1 1 00000000 00000000
 CBLME1 0 1 **VTOC** T 300 1 1 00000001 00140000
 CBLME1 20 1 SYS1.VVDS.VCBLME1 VS T 10 1 1 00140001 0014000A
 CBLME1 20 11 LAC.CBLI.DFPSORT PS T 1 1 1 0014000B 0014000B
 CBLME1 20 12 LAC.SYSIN PS T 1 1 1 0014000C 0014000C
 CBLME1 20 13 **Free Extent** T 63 1 1 0014000D 00190000
 CBLME1 25 1 SYS1.VTOCIX.CBLME1 PS T 18 1 1 00190001 001A0003
 CBLME1 26 4 **Free Extent** T 11 2 1 001A0004 001A000E
 CBLME1 27 0 TEST1.EAV.PDS PO C 30000 1 1 001B0000 07EA000E
 CBLME1 2027 0 LAC.LARGE1 PS C 149985 1 1 07EB0000 2EF9000E
 CBLME1 12026 0 **Free Extent** T 802410 3 1 2EFA0000 FFEF000E
 CBLME1 65520 0 JGE.LARGE.COPY PS C 150255 1 1 FFF00000 2710001E
 CBLME1 75537 0 JGE.LARGE PS C 150255 1 1 27110010 4E31001E
 CBLME1 85554 0 TEST3.KSDS.ADA.DATA VS C 45045 1 2 4E320010 59EC001E
 CBLME1 88557 0 TEST3.KSDS.ADA.INDEX VS C 315 1 1 59ED0010 5A01001E
 CBLME1 88578 0 TEST3.KSDS.ADA.DATA VS C 1890 2 2 5A020010 5A7F001E
 CBLME1 88704 0 **Free Extent** T 5040 4 1 5A800010 5BCF001E

 1Extent Usage on Volume: CBLME1 2015/11/16 15:56 PAGE 2
 ------------------------------ ---------------- --------

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 19 READ INLST 112 F 19 LX CBLME1
 2----3 1
 4 20

 ** SELCOPY/MVS 3.30.002 2015/09/17 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 13. z/OS Printed REPORT Output.

SEP char
SEP NO | OFF

Specifies char, a character constant of length 1 which represents the statement separation character used in control
statements that follow. Alternatively, SEP specifies NO or OFF to disable statement separation in the control statements
that follow.

Note that, if statement separation is disabled, SEP char will re-enable it.

For z/OS systems, the default is set by CBLNAME option, Separator=. Otherwise, the product default is "!" (exclamation
mark).

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 193

SITE company_name
Valid in the SELCNAM file only, OPTION SITE specifies company_name, a quoted character constant containing the
licensed company name and location.

Together with options PASS and RANGE, SITE is one of the licence environment options required for successful
execution and is validated by SELCOPY when the program starts. The company_name specification is between 20 and
36 characters in length and must exactly match that provided by Compute (Bridgend) Ltd, respecting character case,
embedded blanks and punctuation. If not, SELCOPY will terminate with ERROR 153.

By default, company_name is displayed in the header line of each page in the SELCOPY list output.

SORTDIR D | E | H | M | N | P | S | T | X | Z | 0 | NO
SORT

Applicable to directory record input via the READ DIR or READ DIRDATA operation for Windows and Unix-like file
directories only.

SORTDIR may be specified to read directory entries ordered by one of the following:

Code Sort Order
D or T Date. i.e. The file's last-changed timestamp). Entries are processed in descending (D) or ascending (T)

order of date.
X or E Fileid extension. i.e. The qualifier following the last dot/period. Entries are processed in descending (X)

or ascending (E) alphabetical order.
M or N Fileid name. i.e. All qualifiers preceing the last dot/period. Entries are processed in descending (M) or

ascending (N) alphabetical order.
H or P Fileid path. i.e. The directory path including the fileid name. Entries are processed in descending (H) or

ascending (P) alphabetical order.
S or Z File size. Entries are processed in descending (S) or ascending (Z) order of size.
0 or NO Unsorted in the order returned by the system.

The default directory input order is 0 (unsorted) which may be overridden by a SORTDIR specification on a READ
operation.

SSN source
Applicable to ODBC table input and output, SSN specifies the ODBC data source name (source) to which an ODBC
connection will be made. Note that specification of an ODBC source name that has been defined to the local system, is
mandatory for ODBC table input.

The source value must be specified as a character constant which may be overridden by an SSN parameter specified on
a READ or WRITE operation.

SUBDIR int | NOSUB
SUB

Applicable to directory record input via the READ DIR or READ DIRDATA operation for Windows and Unix-like file
directories only.

SUBDIR specifies an integer constant value (int) which represents the number of levels of nested sub-directory entries to
be included for input. e.g. SUBDIR 1 will only read directory entries for files in the input directory, and in all sub-directories
named in the input directory.

The default value is 0 (entries in the input directory only) which may be overridden by a SUBDIR specification on a READ
operation. The SUBDIR option may be specified without int, in which case the default value is 255. NOSUB is a synonym
for SUBDIR 0.

UNPRINTABLE char_string
Nominates character code points that are to be treated as unprintable by the LOG, PLOG and PRINT operations.

The SELCOPY print/log types that involve interpretation of code points as being printable or unprintable are: character
(C), dump (D) and mixed character and hex (M, MC or MP). For these print/log types, only the code points identified as
being printable will be passed without translation to the output stream.

The char_string is a character constant representing one or more character points to be treated as unprintable. e.g. To set
as unprintable the ASCII characters "<" (less than) and "=" (equals) at code points x'60' and x'61' respectively, set
 UNPRINTABLE X'6160'.

Default unprintable code points are illustrated by the description of TYPE C output for the PRINT operation.

USER userid
Applicable to ODBC table input and output, USER specifies the user name (userid) used to connect to the data source via
ODBC. userid must be specified as a character constant.

The userid value may be overridden by specification of the USER parameter on a READ or WRITE operation.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 194

WORKLEN int
WORKAREA
WORKA
W

Valid in program control statements only, OPTION WORKLEN specifies an integer constant value int and indicates that a
user work area of length int bytes is to be defined. The work area will be initialised so that all positions contain the
character specified by option FILL in the program control statements.

Alternatively, option WORKLEN may be specified on a READ operation for the prime input object. However, WORKLEN
may not be set more than once in the same SELCOPY program.

If there is no input object, an 80 character work area is defined by default. Otherwise, no work area is defined and input
data is referenced directly from the data object input buffer.

Chapter 4. SELCOPY Operations OPTION

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 195

PLOG
Print data to the SELCOPY list output and write the same data to the log output.

Syntax:

 +- FROM -- POS 1 -- LENGTH LRECL --+
 (1)(2)(3) | |
 +- TYPE --- C --+ | +------------------------------+ |
 | | | v | |
>>--- PLOG ---------+---------------+--+-+------------------------------+-+-->
 | | | |
 +- TYPE -+- B --+ +---- | Output Element | ------+
 +- D --+
 +- DX -+
 +- H --+
 +- M --+
 +- MC -+
 +- MP -+
 +- N --+
 +- S --+

 >---+--------------------+--+--------------------+--+--------------------+-->
 | | | | | |
 +- DATAWIDTH -- int -+ +- PAGEDEPTH -- int -+ +- PAGEWIDTH -- int -+

 +- DUMPALL -- NO --+ +- DUMPENC -- "|:" --------+
 | | | |
 >---+------------------+--+--------------------------+---------------------->
 | | | |
 +- DUMPALL -- YES -+ +- DUMPENC -- char_string -+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Output Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Syntax Notes:

(1) If only one output element is used, then TYPE may be specified following the output element specification.
(2) The print output type defaults to TYPE C unless only one output element is specified, and that output element is a

field definition with TYPE B specified. If this is the case, the default print type is also TYPE B.
(3) TYPE is ignored if the REPORT option is in effect for SELCOPY's report style print output.

Description:

Equivalent to executing both PRINT and LOG operations for the same output data line. The same output format, as specified by
TYPE, is used for both the print and log output.

PLOG syntax and defaults are based on the PRINT operation. Differences between the PLOG and LOG operations are as follow:

PLOG does not support the REPLY parameters for interactive input.1.

The default output data format is character (TYPE C), not system (TYPE S).2.

See the PRINT and LOG operations for information on parameters and output destination.

Chapter 4. SELCOPY Operations PLOG

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 196

PRINT
Print data to the SELCOPY list output.

Syntax:

 +- FROM -- POS 1 -- LENGTH LRECL --+
 (1)(2)(3) | |
 +- TYPE --- C --+ | +------------------------------+ |
 | | | v | |
>>--- PRINT --------+---------------+--+-+------------------------------+-+-->
 | | | |
 +- TYPE -+- B --+ +---- | Output Element | ------+
 +- D --+
 +- DX -+
 +- H --+
 +- M --+
 +- MC -+
 +- MP -+
 +- N --+
 +- S --+

 >---+--------------------+--+--------------------+--+--------------------+-->
 | | | | | |
 +- DATAWIDTH -- int -+ +- PAGEDEPTH -- int -+ +- PAGEWIDTH -- int -+

 +- DUMPALL -- NO --+ +- DUMPENC -- "|:" --------+
 | | | |
 >---+------------------+--+--------------------------+---------------------->
 | | | |
 +- DUMPALL -- YES -+ +- DUMPENC -- char_string -+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Output Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Syntax Notes:

(1) If only one output element is used, then TYPE may be specified following the output element specification.
(2) The print output type defaults to TYPE C unless only one output element is specified, and that output element is a

field definition with TYPE B specified. If this is the case, the default print type is also TYPE B.
(3) TYPE is ignored if the REPORT option is in effect for SELCOPY's report style print output.

Synonyms:

PRINT PR PRT SYSPRINT

Description:

Each execution of the PRINT operation will write one or more lines of data to the SELCOPY list output. The list output may be a file
identified by input parameter -lst with a default of stdout for Windows and POSIX environments or SYSPRINT otherwise.

The length of the printed data is determined by the combined display lengths of the output elements. If environment option
REPORT is not in effect, then, for all types of print output other than TYPE S, the printed data will be formatted within the Print

Chapter 4. SELCOPY Operations PRINT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 197

Block section of the SELCOPY list output.

Data in the print block is formatted into columns which, in addition to the printed data, contain information such as the prime input
record number, the PRINT operation selection id and its execution number. Except for the printed data column which is preceded
by a scale counting guide, each print block column is preceded by a standard, underlined column name header. These column
headers are also written following a change to or from dump (TYPE D or DX) format print output and before continuing a print block
on a new page of the list output.

Each row of values in the print block may occupy one or more lines of the list output. e.g. Print TYPE B format (both character and
hex representation) occupies one line for the character representation, 2 lines for the up-down hex representation of the printed
data and 1 line of blank characters.

The DATAWIDTH parameter determines the data width of the printed data column. If the data width is less than the length of
printed data, then the printed data will wrap onto the next row of the printed data column. Each new row of wrapped data is
preceded by a signed numeric value indicating the offset from the start of the printed data.

 INPUT SEL SEL 1 RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 9 0 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------

 1 1 2 CB12DD714D51828C00A208CRolling In the Deep 407
 CCFFCCFFFCFFFFFCFFCFFFCD9998984C94A884C88944
 32124471445182830012083963395709503850455700

 +100 Adele
 444C889844
 0001453500

 +200 21 : :Q 201A
 4444444444444FF44007F07D700410FFFC
 0000000000000210003AD0A861040C2011

 +300 00AAdele 2011-01-21T08:00:00Z2012-08-02T11:30:36Z2011-08-19T12
 011FFCC8898444444444444444444444444444444444444FFFF6FF6FFEFF7FF7FFEFFFF6FF6FFEFF7FF7FFEFFFF6FF6FFEFF
 55C001145350000000000000000000000000000000000002011001021308A00A0092012008002311A30A3692011008019312

 +400 :29:17Z
 7FF7FFE
 A29A179

 2 2 2 2648A25633D1540400B208ERumour Has It 407
 FFFFCFFFFFCFFFFFFFCFFFCDA99A94C8A4CA44
 26481256334154040022085944649081209300

 +100 Adele
 444C889844
 0001453500

 +200 21 ` i 201A
 4444444444444FF440062073800410FFFC
 00000000000002100038209191040C2011

 +300 <00AAdele 2011-01-21T08:00:00Z2012-08-02T11:30:36Z2011-08-19T12
 044FFCC8898444444444444444444444444444444444444FFFF6FF6FFEFF7FF7FFEFFFF6FF6FFEFF7FF7FFEFFFF6FF6FFEFF
 77C001145350000000000000000000000000000000000002011001021308A00A0092012008002311A30A3692011008019312

 +400 :30:11Z
 7FF7FFE
 A30A119
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....0

Figure 14. PRINT TYPE B output with DATAWIDTH 100.

For dump (TYPE D or DX) print format output, the printed data occupies the entire row of data written to the print block, including
areas used by the non-printed data columns. Therefore, for dump format output, the data width is not determined by DATAWIDTH,
but the PAGEWIDTH parameter. e.g.

 INPUT SEL SEL
 RECNO TOT ID.
 ----- --- ---
 1 1 2 407
 0000 C3C2F1F2 C4C4F7F1 F4C4F5F1 F8F2F8C3 F0F0C1F2 F0F8C3D9 96939389 958740C9 |CB12DD714D51828C00A208CRolling I|
 0020 9540A388 8540C485 85974040 40404040 40404040 40404040 40404040 40404040 |n the Deep |
 0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
 0060 =same= : :
 0080 40404040 40404040 40404040 404040C1 84859385 40404040 40404040 40404040 | Adele |
 00A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
 00C0 40404040 40404040 40404040 40404040 40404040 40F2F140 40404040 40404040 | 21 |
 00E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
 0100 40404040 40404040 40404040 40404040 40404040 40404040 40404000 037AFD00 | ..:..|
 0120 7AD87601 0044100C F2F0F1C1 05151CF0 F0C1C184 85938540 40404040 40404040 |:Q......201A...00AAdele |
 0140 40404040 40404040 40404040 40404040 40404040 40404040 404040F2 F0F1F160 | 2011-|
 0160 F0F160F2 F1E3F0F8 7AF0F07A F0F0E9F2 F0F1F260 F0F860F0 F2E3F1F1 7AF3F07A |01-21T08:00:00Z2012-08-02T11:30:|
 0180 F3F6E9F2 F0F1F160 F0F860F1 F9E3F1F2 7AF2F97A F1F7E9 |36Z2011-08-19T12:29:17Z |
 2 2 2 407
 0000 F2F6F4F8 C1F2F5F6 F3F3C4F1 F5F4F0F4 F0F0C2F2 F0F8C5D9 A49496A4 9940C881 |2648A25633D1540400B208ERumour Ha|
 0020 A240C9A3 40404040 40404040 40404040 40404040 40404040 40404040 40404040 |s It |
 0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
 0060 =same= : :
 0080 40404040 40404040 40404040 404040C1 84859385 40404040 40404040 40404040 | Adele |
 00A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
 00C0 40404040 40404040 40404040 40404040 40404040 40F2F140 40404040 40404040 | 21 |
 00E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
 0100 40404040 40404040 40404040 40404040 40404040 40404040 40404000 03682200 | |
 0120 79318901 0044100C F2F0F1C1 07474CF0 F0C1C184 85938540 40404040 40404040 |`.i.....201A..<00AAdele |
 0140 40404040 40404040 40404040 40404040 40404040 40404040 404040F2 F0F1F160 | 2011-|
 0160 F0F160F2 F1E3F0F8 7AF0F07A F0F0E9F2 F0F1F260 F0F860F0 F2E3F1F1 7AF3F07A |01-21T08:00:00Z2012-08-02T11:30:|
 0180 F3F6E9F2 F0F1F160 F0F860F1 F9E3F1F2 7AF3F07A F1F1E9 |36Z2011-08-19T12:30:11Z |

Figure 15. PRINT TYPE D output with PAGEWIDTH 140.

Chapter 4. SELCOPY Operations PRINT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 198

Parameters:

Output Element
Specifies an output element that constitutes a portion of the printed record data.

Multiple output element specifications are concatenated with no intervening blanks and in the order in which they are
specified to construct the complete print record. The combined lengths of each of the elements define the output printed
record length.

If no output element is specified, the output record data defaults to a single field definition starting at position 1 with length
equal to the prevailing value of the variable LRECL. (i.e. FROM POS 1 LENGTH LRECL).

Before data is printed, output element values that are of numeric or character numeric data type are automatically
converted to decimal character display format if any of the following are true:

The output element is a DCLVar.1.
Multiple output elements are specified.2.
FORMAT is included in the output element specification.3.

Note that &DCLVar may be used to output the unformatted value of a numeric DCLVar.

Each output element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type.

If specified as a type 1 field definition but without a length, the field will have a default length equal to the
prevailing value of variable LRECL. However, if parameter FORMAT is used to convert the field data to printable
hex, specification of a length is mandatory.

Applicable only to PRINT, LOG and PLOG operations, keyword LRECL, which usually defines the maximum
output record length, is instead used as a synonym for keyword LENGTH in a type 1 field definition.

Although not necessary, keyword FROM may also be used before an output element specified as a
char_constant or a DCLVar of character data type.

char_constant
A quoted or hexadecimal character constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for data specified by the
output element.

The source data in an output element of numeric data type is automatically converted to displayable character
format (using a CVxC operation) before it gets printed. The length of the output element is determined by
fmt_string, not the length of the output element source.

For output elements of character data type, fmt_string must be a printable hex format string for which a CVCH
(convert character to hex) operation will be performed.

For output elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the output element value is converted from its source numeric data type to the
decimal character display format described by the format string template.

For an output element specified as an @variable, IntVar or DCLVar of numeric or character numeric data type, a
default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the fmt_string specified on
the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for @variable, IntVar and DCLVar representing an integer value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

Chapter 4. SELCOPY Operations PRINT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 199

DATAWIDTH int
DW

Applicable to all types of print format other than system (TYPE S) or dump (TYPE D or DX), DATAWIDTH specifies the
width of the printed data column in the print block. i.e. the length of printed data to be written to each line of the SELCOPY
list output.

DATAWIDTH is an environment option which is established during control statement analysis and applies to all PRINT
and LOG operations executed during the SELCOPY program run. See OPTION DATAWIDTH for further details.

The default is the value set by OPTION DATAWIDTH in the SELCNAM file, otherwise a value of 100 is used.

DUMPALL YES | NO
Applicable to dump (TYPE D or DX) format only.

DUMPALL determines whether or not second and subsequent consecutive lines of dump format output that contain
identical data to the first line, are to be condensed and displayed as a single output row containing the literal "=same="
followed by a parenthesised count of the number of condensed lines.

For the PRINT operation on which it is specified, DUMPALL YES will output all line containing duplicate data, DUMPALL
NO will condense these lines. Note that DUMPALL is a synonym for DUMPALL YES.

The default value is set by environment option, DUMPALL. Otherwise, the default is NO.

DUMPENC char_string
Applicable only to dump format which includes character representation of the data (TYPE D).

For the PRINT operation on which it is specified, DUMPENC specifies char_string, a character constant of length 1 or 2,
which identifies the characters used to enclose the character representation of the dump format output.

The first (or only) character defines the enclosing character used on print lines that have not been condensed to
a single line. (See option DUMPALL above).

1.

The second character defines the enclosing character used on print lines lines that have been condensed to a
single line.

2.

The default value is set by environment option, DUMPENC. Otherwise, "|" (or symbol) and ":" (colon) are used as the first
and second characters respectively.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

PAGEDEPTH int
PD

Specifies the depth (number of lines) of each page of the SELCOPY list output.

For all types of print format other than system (TYPE S), if output of a print row would exceed the PAGEDEPTH value
(minus 1 for the print block scale line footer), a new page is started. At the start of each new page and before output of the
print row data, the page header lines are written (so long as environment option HEAD is not set to NO), followed by the
print block headers. Thus, the print block headers and footers are displayed on each page.

PAGEDEPTH is an environment option which is established during control statement analysis and applies to all
SELCOPY list output. See OPTION PAGEDEPTH for further details.

The default value is set by OPTION PAGEDEPTH in the SELCNAM file, otherwise a value of 58 is used.

PAGEWIDTH int
PW

Specifies the width of each page of the SELCOPY list output which, for dump print format (TYPE D or DX) only, restricts
the length of printed data written to each line of the print block.

See description of TYPE=D in the print block output for details on how PAGEWIDTH affects dump format print.

PAGEWIDTH is an environment option which is established during control statement analysis and applies to all PRINT
and LOG operations executed during the SELCOPY program run. See OPTION PAGEWIDTH for further details.

The default value is set by OPTION PAGEWIDTH in the SELCNAM file, otherwise a value of 132 is used for POSIX
environments and 133 for z/OS and z/VM CMS environments..

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

TYPE B | C | D | DX | H | M | MC | MP | N | S
TY

Identifies the type of print output to be used when writing the printed data.

Chapter 4. SELCOPY Operations PRINT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 200

TYPE B

Print both character (TYPE C) and hex (TYPE H) format output. However, unlike TYPE C print format, an unprintable
character is displayed as a blank.

Each row of printed data in TYPE B format occupies 4 lines of the list output: 1 line for the character representation, 2
lines for the up-down hex representation and 1 line of blank characters. e.g.

 } n L CBLATRACV3R4M0 ~201511121633
 000071CD68C40044445544535343073333333333330000
 0001D4D5E53C0032C142136324D00E2015111216330000

TYPE C

Print character format output.

Each row of printed data in TYPE C format occupies 1 line of the list output and only characters within the printed data
that are determined as being printable are written without translation to the list output print block. Each character,
determined as being unprintable, is translated to a "." (dot/period) before the write occurs. e.g.

 }...n..L..CBLATRACV3R4M0.~201511121633....

The code points treated by SELCOPY as being printable or unprintable, may be tailored using the PRINTABLE and
UNPRINTABLE options.

The following table details the default interpretation ("Y" = printable, "." = unprintable) of each code point on EBCDIC
based systems. (e.g. z/OS and z/VM CMS).

HEX -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0-
1-
2-
3-
4- Y Y Y Y Y Y Y
5- Y Y Y Y Y Y Y
6- Y Y Y Y Y Y Y Y
7- Y Y Y Y Y Y Y
8- . Y Y Y Y Y Y Y Y Y
9- . Y Y Y Y Y Y Y Y Y Y
A- . Y Y Y Y Y Y Y Y Y . . . Y . .
B- Y . Y Y . .
C- Y Y Y Y Y Y Y Y Y Y
D- Y Y Y Y Y Y Y Y Y Y
E- Y . Y Y Y Y Y Y Y Y
F- Y Y Y Y Y Y Y Y Y Y

Similarly, the following table details the default interpretation ("Y" = printable, "." = unprintable) of each code point on
ASCII based systems.

HEX -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0-
1-
2- Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
3- Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
4- Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
5- Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
6- Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
7- Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y .
8- Y
9-
A- . . . Y . . Y Y . . .
B-
C-
D-
E-
F-

Chapter 4. SELCOPY Operations PRINT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 201

TYPE D

Print dump format output with both displayable hex and character representation.

Each row of printed data occupies 1 line of the list output and includes a 4 character hexadecimal numeric value
identifying the offset of the data in the current row from the start of the printed data. This is followed by the displayable
hex and then the character representation of the same length of printed data. The length of data represented by each
print row is determined by the prevailing PAGEWIDTH value. e.g.

 0000 00000001 7D14CDD5 6E85C34C 00004342 |....}...n..L..CB|
 0010 4C415452 41435633 52344D30 007E3230 |LATRACV3R4M0.~20|
 0020 31353131 31323136 33330000 0000 |1511121633.... |

Displayable hex is comprised of a number of groups of 8 hex characters, each group representing 4 bytes of data.
Each byte of data is represented by an adjacent pair of hex characters located at even offsets from the start of the
displayable hex data.

Character representation of the printed data follows the displayable hex and is enclosed in delimiter characters as
defined by the environment option DUMPENC (default "|", the OR symbol). Printable and unprintable characters are as
described for the TYPE C print format and, like TYPE C, each unprintable character is displayed as a "." (dot/period).

If environment option DUMPALL=NO is in effect, consecutive rows of dump format print output that contain the same
data will be grouped and condensed. To do this, SELCOPY outputs the first row of the group in the standard format
printed followed by a single row which represents the remaining rows of the group. This row contains the next hex
value offset and, in place of the displayable hex, the literal "=same=" followed by a parenthesised count of the number
of print lines represented by the row. No character representation of the data is displayed, however, the character data
delimiter characters are included using the second DUMPENC environment option character (default ":", colon).

See TYPE=D Output in the description of the print block for more detailed information.

TYPE DX

Print dump format output (TYPE D) but containing displayable hex only. e.g.

 0000 00000001 7D14CDD5 6E85C34C 00004342
 0010 4C415452 41435633 52344D30 007E3230
 0020 31353131 31323136 33330000 0000

TYPE H

Print hex format output.

Each byte is represented by 2 digit hexadecimal value in the range x'00' to x'FF'. Hex print format displays each byte of
the printed data as its hexadecimal value.

Each row of printed data in TYPE H format occupies 3 lines of the list output. The first line displays the first digit of
each byte of printed data and, aligned directly below it, the second line displays the second digit so that the hex value
is displayed vertically in an up-down format. The third line contains only blank characters. e.g.

 000071CD68C40044445544535343073333333333330000
 0001D4D5E53C0032C142136324D00E2015111216330000

TYPE M or TYPE MC or TYPE MP

Print mixed character (TYPE C) and hex (TYPE H) format output.

For mixed print format, each individual byte of the printed data will be displayed in either TYPE C or TYPE H format. To
display all printed data in both formats simultaneously, TYPE B should be used.

SELCOPY examines each byte of the printed data and, if it is printable (as indicated by the description for TYPE C),
then character representation is used. Otherwise the byte is displayed as hex.

Each row of printed data in TYPE M format occupies 3 lines of the list output. For each byte of the printed data, the first
line displays either the printable character representation or the first digit of the hexadecimal value. The second
displays either a blank (if the character is printable) or the second digit of the hexadecimal value. The third line
contains only blank characters. e.g.

 0000}1CDn8CL00CBLATRACV3R4M00~2015111216330000
 0001 4D5 53 00 0 0000

Chapter 4. SELCOPY Operations PRINT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 202

TYPE N

Print with no conversion of unprintable characters.

TYPE N format output is identical to TYPE C character print format except that all characters are considered printable.
e.g.

 �}�ÍÕn�ÃLCBLATRACV3R4M0~201511121633

If the print output is spooled to a real printer device, then care should be taken that the unprintable characters do not
perform unintentional printer control. e.g. 'x'0C' is interpreted as a printer control form feed instruction by a Windows
raw printer driver.

TYPE S

System print with no conversion of unprintable characters. TYPE S format output is identical to TYPE N with the
following exceptions:

All page headers are suppressed.1.
All print block headers and footers are suppressed.2.
All print block column values, other than the printed data, are suppressed.3.
Each row of printed data starts in the first column of the list output.4.
Rows of printed data do not wrap onto the next line of the list output.5.
The maximum length of each row of printed data is 133.6.

On z/OS and z/VM CMS systems, one of the following ASA characters is expected in the first column of the print data:

ASA Character Description
 1 (one) Skip to top of page and print.
 + (plus) Space 0 lines and print. (Used for overprinting)
 b (blank) Space 1 line and print.
 0 (zero) Space 2 lines and print.
 - (minus) Space 3 lines and print.

Invalid ASA characters are tolerated, however, valid ASA characters are used by SELCOPY to maintain the internal
variable LINE. e.g. An ASA character of "1" will reset the value of LINE back to 1. An invalid ASA character is treated
as being blank (i.e. space 1 line), and so the value of LINE is incremented by 1.

The print data record is treated as being of fixed length 133 record format (RECFM F, LRECL 133). Therefore, any
output element specified as a field definition, will have a default length of 133 if one is not supplied (or implied) as part
of the field definition. If a field assigned this default length references data extending beyond the length of the work
area or current input record, then a length equal to the current value of variable LRECL is used instead.

Print data is truncated at 133 bytes and, if its total length (i.e. the sum of all the output element lengths) is less than
133, then it will be padded with blanks to length 133. Thereafter, if the SELCOPY list output file object is actually of
variable length record format, any trailing blanks will automatically be truncated.

Chapter 4. SELCOPY Operations PRINT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 203

READ
Inputs data from a data object source for processing by the SELCOPY program.

Syntax:

 +- INTO --- 1-------+
 | |
>>-- READ -- | Input Object | --+-------------------+--+-------------------+->
 | | | |
 +- INTO -+- expr ---+ +- WORKLEN -- int --+
 +- DCLvar -+ (1)

 >--+-------------------+--+-----------------+--+-----------+-+-----------+-->
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

 +------------------------------------+
 v |
 >---------+------------------------------------+----------------------------><
 | |
 +-+-----+-- CAT -- | Input Parms | --+
 | |
 +- ! -+
 (2)

 (1) WORKLEN is specified once only on either a READ or OPTION operation.
 (2) Separator character (default !) required only if CAT is specified on the same control statement as READ.

Input Object: (Dataset/File, SELCOPYi List or Database Table)

 (3)
 |--+--- fileid --------| Opt A |----+->
 | |
 | |
 | +--- FILE ----- DEFAULTF -+ |
 | | | |
 +-+-------------------------+--+- DSN ---- fileid --------| Opt A |-+--+
 | | | | | | | |
 | | +- FILE -+ | +- LIST --- list_command --| Opt B |-+ |
 | | | | | | | |
 | +-+--------+--- fname ----+ +- TABLE -- table_name ----| Opt C |-+ |
 | | | |
 | +- SQL ---- full_select ---| Opt D |-+ |
 | |
 | +- FILE -+ |
 | | | |
 +---+--------+--- fname --------------------------------+-----------+--+
 | (4) | | |
 | +-| Opt A |-+ |
 | | | |
 | +-| Opt B |-+ |
 | | | |
 | +-| Opt C |-+ |
 | | | |
 | +-| Opt D |-+ |
 | +- FILE -+ |
 | | | |
 +---+--------+-+- CARD -----+--+
 | |
 +- CLIP -----+
 | |
 +- DUMMY ----+
 | |
 +- STDIN ----+
 +- SYSIN ----+

 >---+----------+--+--------+--+-----------------+---------------------------|
 | | | | | |
 +- DEFER --+ +- WTO --+ +- FILL -- char --+

 (3) Optional parameters may be specified on any READ, OPEN and CLOSE operations for the same fname.
 (4) fname without an input object reference is valid if fname is already associated with a data object.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 204

Opt A: (Dataset/File Object Options)

 |---+-- | z/OS & z/VM CMS OS Simulated QSAM | ----+---+-------------+----+--|
 | | | | |
 +-- | z/OS Multiple Library Member Input | ---+ +- DSNPFX ----+ |
 | | | | |
 +-- | VSAM (z/OS, z/VM CMS & Micro Focus) | --+ +- NODSNPFX --+ |
 | |
 +-- | Windows & Unix-like Files | -----------------------------------+
 | |
 +-- | z/VM CMS Files | --+

Opt B: (SELCOPYi List Object Options)

 |---+------------------------------+--+------------------------------+------>
 | | | |
 +- SELECT -- select_clause ----+ +- WHERE -- search_condition --+

 >---+------------------------------+--+-----------+-------------------------|
 | | | |
 +- SORT ---- order_by_clause --+ +- HEADER --+

Opt C: (Database Table Object Options)

 |---+------------------------------+--+------------------------------+------>
 | | | |
 +- FMT ----- select_clause ----+ +- WHERE -- search_condition --+

 >---+------------------------------+----- | Opt D | ------------------------|
 | |
 +- SORT ---- order_by_clause --+
 | |
 +- UPD ----- update_columns ---+

Opt D: (Common Database Table and SQL Query Object Options)

 |---+------------------+--+-------------------+--+---------------------+---->
 | | | | | |
 +- SSN -- source --+ +- USER -- userid --+ +- ODBCPASS -- pass --+

 >---+------------------+--+-----------+-------------------------------------|
 | | | |
 +- SEP --+- char --+ +- HEADER --+
 +- OFF ---+

z/OS & z/VM CMS OS Simulated QSAM:

 +- RDW ----+
 | |
 |---+------------------+--+----------------+--+----------+--+--------+------|
 | | | | | | | |
 +- RECFM --+- F ---+ +- LRECL -- int -+ +- NORDW --+ +- UPD --+
 +- FB --+ (6)
 +- U ---+
 +- V ---+
 +- VB --+

z/OS Multiple Library Member Input:

 +- RDW ----+
 | |
 |---+- DIR ------------+----------------------+----------+--+--------+------|
 | | | | | |
 +- DIRDATA --------+ +- NORDW --+ +- UPD --+
 (6)

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 205

VSAM (z/OS, z/VM CMS & Micro Focus):

 +- FWD +
 (5) | |
 |---+- VSAM +-+------+-+------+-+--------------------------+-+-----------+--|
 | | | | | | | | | |
 +- ESDS + +- BWD + +- UPD + +------ REC -+- record_num + +- ALTX int +
 | | (6) +- STARTREC -+ |
 +- KSDS + | |
 | | +------ RBA -+- byte_num --+
 +- RRDS + +- STARTRBA -+ |
 | |
 +------ KEY -+- key -------+
 +- STARTKEY -+
 | |
 +------ KGE -+
 +- STARTKGE -+

Windows & Unix-like Files:

 +- RECFM ---- U ---+
 | |
 |---+------------------+--+---------------------+--+----------------+------->
 | | | | | |
 +- RECFM --+- F ---+ +- EOL --+- CRLF -----+ +- LRECL -- int -+
 +- FB --+ +- CR -------+
 +- V ---+ +- LF -------+
 +- VB --+ +- constant -+
 +- V2 --+ | |
 +- V3 --+ +- NO -------+
 +- MFV -+

 +- BDW ----+ +- NORDW --+
 | | | |
 >---+-------------------+--+----------+--+----------+--+------------------+->
 | | | | | | | |
 +- BLKSIZE -- int --+ +- NOBDW --+ +- RDW ----+ | +- 8 ---+ |
 | | | |
 +- TABS -+- int -+-+

 +- UPD --+
 | |
 >---+--------+--+---+-------|
 | |
 +-- | Windows & Unix-like Multiple File Input | ----+
 | |
 +-- | Direct Access | ------------------------------+
 (6)

Windows & Unix-like Multiple File Input:

 +- SUBDIR --- 0 -----+
 | |
 |---+- DIR ------+------+--------------------+------------------------------>
 | | | |
 +- DIRDATA --+ | +- 256 -+ |
 | | | |
 +- SUBDIR -+-------+-+
 | |
 +- int -+

 +- 0 --+
 +- SORTDIR -+- NO -+ +- DIRTYPE -- ANR ---+
 | | | |
 >-----+------------------+---+--------------------+---+--------+------------|
 | | | | | |
 +- SORTDIR -+- D --+ +- DIRTYPE -- ALL ---+ +- RAW --+
 +- E --+ | |
 +- H --+ | +-----+ |
 +- M --+ | v | |
 +- N --+ +- DIRTYPE -+- . -+--+
 +- P --+ +- A -+
 +- S --+ +- D -+
 +- T --+ +- H -+
 +- X --+ +- N -+
 +- Z --+ +- R -+
 +- S -+
 +- V -+
 +- Y -+

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 206

z/VM CMS Files:

 +- UPD --+
 | |
 |---+-------------------------------+------+--------+-----------------------|
 | (6) |
 +-- | Direct Access | ----------+
 | |
 +--+- DIR ------+---------------+
 | |
 +- DIRDATA --+

Direct Access:

 |---+------ REC --+-- record_num -----------------------------------+-------|
 +- STARTREC --+ |
 | |
 +------ RBA --+-- byte_num -------------------------------------+
 +- STARTRBA --+ |
 | |
 +------ KEY --+-- key --- KEYPOS -- int ---+------------------+-+
 +- STARTKEY --+ | |
 | | +- KEYLEN -- int --+
 +------ KGE --+
 +- STARTKGE --+

Syntax Notes:

(1) WORKLEN may be specified only once on either an OPTION operation or on the first occurrence of a READ
operation within the SELCOPY input control statements.

(2) ! Keyword CAT is a sub-operation and so must be the first identifier specified on a SELCOPY statement.
Specification of the defined statement separator character (default "!") before a sub-operation keyword is required
only if it is not the first identifier. i.e. the READ operation keyword and/or CAT sub-operation keywords exist on the
same input control file record.

(3) Optional parameters may be specified on any READ, OPEN or CLOSE operation for a data object referenced by
the same fname. If different option values relating to file geometry are specified for the same fname (e.g. RECFM,
LRECL, BLKSIZE, VSAM), then the last value specified will be used.

(4) READ of fname, without a reference to an input data object, is valid only if fname has already been associated
with a data object. i.e.

fname is an already allocated z/OS or z/VM CMS ddname.1.
Control statement analysis pocessing has already occurred for an OPEN, CLOSE or READ operation that
associates fname with a data object.

2.

(5) Specification of VSAM or specific VSAM file type is not necessary for z/OS VSAM data sets. For z/OS, the VSAM
data set type is established dynamically from the ICF catalog.

(6) UPD and Direct Access parameters are not supported on CAT.

Synonyms:

READ RD GET INPUT IN

Description:

Each execution of a READ operation will present the program with a single line of data read from the specified input data object.
The length of this data is determined by the type of input object and input parameter options specified on READ.

For z/OS and z/VM CMS file input, each line of data is a record as defined by the data set or file organisation. For Windows and
Unix-like files (including CARD, CLIP and STDIN input), a record is usually a line of data terminated by end-of-line characters,
although fixed and other variable length formats are also supported. The row of data returned by SELCOPYi list and ODBC table
input is of fixed length, determined by the column widths selected.

Sub-operation, CAT, may be specified immediately following a READ operation (or another CAT sub-operation) in order to
concatenate input from another data object to that of the object specified by the previous READ or CAT. Once end-of-file has been
reached for one input object, the next execution of READ will read data from the next, concatenated data object.

By default, records are read sequentially from the start of the data object. Where applicable, a direct read may be performed for a
record located anywhere within a file object. Similarly, the direction of sequential processing of VSAM and Micro Focus file objects
may be reversed using the BWD and FWD parameters.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 207

Input processing will read a block of data from the specified input data object into a storage buffer defined for that fname. If no user
work area is defined and input records are not to be assigned to a character declared variable (via INTO DCLvar), then each
execution of READ will update the base address (position 1) so that it points to the next, unprocessed record within the buffer.

If INTO DCLvar is specified and DCLvar is a character declared variable, then the input record data is a value which gets assigned
to DCLvar. Otherwise, the line of data is copied to a position in the work area buffer (default position 1), where the position 1 base
address is static.

Following any successful READ operation, the internal variable, LRECL, is automatically assigned a value equal to the length of the
record read.

Parameters specified on READ and CAT apply either to the object open, data retrieval from the object, the execution of the
individual SELCOPY operation or the definition of a user work area.

Object Open Parameters

By default, an input data object on READ or CAT is opened when the statement containing the operation keyword is processed
during control statement analysis. Parameters affecting object open are applied once when the object is opened.

Open parameters, specified on READ or CAT operations for the same fname that occur in subsequent control statements, may
update or expand on the values set by parameters in the first input operation. However, if the object is already open, they will
have no effect unless the object is re-opened. Open parameters are as follow:

fileid
DEFER
DSN
DSNPFX

ESDS
FMT
KSDS
LIST

RRDS
SELECT
SORT
SQL

TABLE
UPD
VSAM
WHERE

Open of a data object assigned to fname may be deferred until selection time processing. Furthermore, the object may be
closed and re-opened if required. In these cases, SELCOPY uses the prevailing values of open parameters specified on all
input operations for fname.

Deferred open may be achieved using any of the following methods:

Specify DEFER on the first READ operation for fname.•
Include an OPEN operation for fname on a control statement that occurs before the first READ operation for fname.•
Specify a dynamic value (i.e. a declared variable name or field definition) for the input data object specification
parameters: fileid, DSN, FMT, LIST, SELECT, SORT, SQL, TABLE, UPD (for ODBC table input) and WHERE.

•

Data Retrieval Parameters

Data retrieval is performed when the READ operation is executed during selection time processing and, for Windows and
Unix-like files, may involve additional processing by SELCOPY to establish the record and its length.

Data retrieval parameter values are established during control statement analysis. Therefore, parameter values specified on
READ or CAT operations for the same fname that occur on subsequent control statements, may update or expand on values
set by previous input operations. The prevailing parameter values are used for all data retrieval performed for fname. Data
retrieval parameters are as follow:

BDW / NOBDW
BLKSIZE
DIR
DIRDATA
DIRTYPE

EOL
FILL
HEADER
LRECL
ODBCPASS

RAW
RDW / NORDW
RECFM
SEP
SORTDIR

SSN
SUBDIR
TABS
USER

Operation Specific Parameters

Operation specific parameters apply only to the individual READ operation. With the exception of current input file position for
sequential input, operation specific parameter values, specified on other READ or CAT operations for the same fname, do not
affect the execution of the current READ operation. Operation specific parameters are as follow:

BWD
FWD
INTO
KEY

KEYLEN
KEYPOS
KGE
RBA

REC
STARTKEY
STARTKGE
STARTRBA

STARTREC
STOPAFT
TIMES
WTO

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 208

Parameters:

fileid
Identifies the READ operation as being for file input. fileid is a fileid clause specifying the name by which the input file is
known to the local system.

If not specified as the DSN parameter value, then specification of FILE is invalid and the associated fname used by
SELCOPY to reference input from fileid is derived from fileid itself. The derived fname is determined as follows:

For z/OS, if fileid is the name of a sequential data set or a PDS/PDSE library and member, fname is set to be the
first qualifier of the data set name.

◊

For z/VM, if fileid is the name of a CMS file (fn ft fm) , fname is set to be the file name qualifier (fn).◊

For Windows and Unix-like files, the derived fname depends on the length of the portion of fileid that follows the
last "." (dot/period), if any. In Windows, this is the fileid extension.

If this length is 3 characters or less, fname is the up-to-8 character file name string that follows the path
specification (if any) up to, but not including, "." (dot/period) prefixed fileid extension.

1.

Otherwise, fname is the character string which occupies up-to-8 characters of fileid, not including the
path specification (if any).

2.

◊

On z/OS systems, if fileid is the name of a sequential data set or PDS/PDSE library and member, then the derived fname
is also the ddname that SELCOPY dynamically allocates to fileid. (see FILE parameter).

fileid may contain wildcard characters to represent a fileid mask used for directory record (DIR/DIRDATA) input. A
description of fileid mask specification is documented by the fileid clause under Input/Output Data Objects.

fileid may be specified as an unquoted literal, a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Notes on fileid specification:

If fileid is specified as a declared variable or field definition, then it must be an argument to parameter DSN. Also,
open of the input file is deferred until the READ operation is executed during selection time processing.

1.

In z/OS, where fileid may be interpreted as being either a z/OS data set name or an HFS/ZFS Unix-like file name,
then SELCOPY will treat fileid first as a data set name and then, if not found, as a Unix-like file name.

Similarly in a z/VM CMS environment, where fileid may be interpreted as either a CMS mini disk file specification
or a BFS Unix-like file name.

2.

On a z/OS system, if environment option DSNPFX is in effect, then the TSO prefix (TSO/E) or ACF userid (batch)
will be prefixed to fileid if the constant, variable or field definition value used is unquoted. Furthermore, if option
DSNPFX is in effect and neither DSNPFX nor NODSNPFX is specified on the READ operation, open of a data
set without a DSN prefix will be attempted if the initial attempt to open a data set with a DSN prefix fails.

Only if this second attempt to open a data set also fails, will fileid be treated as a Unix-like HFS/ZFS file name as
described in note 2. above.

3.

A Windows or Unix-like fileid is not upper cased, even if specified as an unquoted literal.4.

ALTX int
KEYIX

Applicable only to Micro Focus VSAM input, ALTX identifies the alternate index number int to be used to process the
indexed (KSDS) file. int must be specified as a decimal integer constant.

Default is ALTX 0. i.e. the primary index.

BDW | NOBDW
Specifies whether or not a Windows or Unix-like input file of variable length record format (RECFM V or VB) is blocked,
with each block of records prefixed by a 4-byte block descriptor word (BDW).

Default is BDW, input of variable length record format is blocked.

BLKSIZE int
BLK
B

Specifies the size of the input buffer defined for fname.

BLKSIZE should never be specified for input of a z/OS data set, CMS file or IBM VSAM data set. For these types of file
input, the input file buffer size is always determined by standard access method processing. However, if BLKSIZE is
specified it restricts the maximum length of records read from the file which may result in a file geometry conflict error.

BLKSIZE is tolerated and ignored if specified on the READ operation for LIST and ODBC database table input.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 209

For Windows and Unix-like files, including Windows clipboard (CLIP) and Micro Focus VSAM input, BLKSIZE overrides
the default buffer size and, if LRECL is not specified, also imposes a maximum record length for the input record data.
(see LRECL default). The input file buffer size is determined as follows:

The value specified on parameter BLKSIZE.1.

For fixed length record format (RECFM F) only, buffer size is the value specified on parameter LRECL, if greater
than 2048.

2.

2048 bytes.3.

For Micro Focus VSAM input, if the buffer size is less than the maximum record length defined for the file, then ERROR
571 (Max lrecl exceeds buffer size) is returned.

For all input record formats, if the maximum record length imposed by the BLKSIZE value is less than the value specified
for LRECL, then ERROR 571 (Bufsize < LRECL+delims) is returned.

For Windows and Unix-like files read with RECFM V or VB and option BDW, ERROR 537 (RECFM=V BDW/RDW value
exceeds BLKSIZE or LRECL) is returned if the value in a BDW exceeds the explicit or implied BLKSIZE value.

BWD
Applicable only to z/OS and z/VM CMS KSDS and ESDS input, and also to Micro Focus VSAM input. BWD specifies that,
when a sequential read is performed by the READ operation, the record that occurs before the current file input position
will be read. i.e. in a backwards direction.

If fname has not been read since its open, then the first record returned by a backwards sequential read will be the last
record in the file. The EOF condition is set when the file is read backwards and the current input position points to the first
record.

For Micro Focus VSAM input and KSDS files only, multiple READ operations may be specified with BWD or FWD
parameters to reverse the direction of sequential input for file fname. The direction of input may be reversed any number
of times during the course of the program execution and so care should be taken not to cause a loop situation.

If BWD is specified on any READ operation, then either FWD or BWD must be specified on READ operations for the same
fname.

The default input direction is forwards (FWD).

DEFER
Defer open of the data object until data is to be read during selection time processing.

By default an input file is opened when the statement on which the READ operation exists, is processed during control
statement analysis.

DIR
Used to input the directory entries for z/OS library members or z/VM CMS, Windows or Unix-like files whose fileids match
the fileid mask assigned to fname. Each directory entry is processed as a single input record.

For Windows and Unix-like files, directory records may also be filtered by DIRTYPE and SUBDIR parameter options and
sorted using a SORTDIR parameter option. Furthermore, RAW may be specified to return the directory entry with no
formatting applied.

UPD (update-in-place) processing is not supported on DIR input.

See also parameters DIRTYPE, SORTDIR and SUBDIR.

DIRDATA
DIRD
DD

Input the directory record, as described for DIR, followed by all data records for each file that matches the specified fileid
mask.

The type of record last read for fname may be determined by an IF DIR/DATA condition.

Separate input record (INCOUNT) values are maintained for the directory and data records. The current value of
INCOUNT for fname will apply to the type of record (directory or data) last read for fname. Therefore, before testing an
INCOUNT value, it should first be established whether the last record read was a directory or data record.

The FLAG operation may be used to force early end of file, directory or disk for DIRDATA input so that the next record
read will be a directory record for a new file in the same directory, in a new directory/sub-directory or in a new disk volume.

UPD (update-in-place) is supported on DIRDATA input for data records only. An attempt to update a directory record will
return ERROR 565.

See also parameters DIRTYPE, SORTDIR and SUBDIR.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 210

DIRTYPE attributes
TYPEDIR
TYPE

For DIR and DIRDATA input of Windows and Unix-like files only, DIRTYPE may be specified to filter directory entries
based on the attributes of the files to which they refer. Only those file directory entries that match the requested file
attributes are selected. Options are as follow:

Code File Attribute required
. The working "." and parent ".." directory entries.
R Read-only.
H Hidden.
S System.
V Volume-Id.
D Subdirectory.
A Archive. (Amended file.)
Y Symbolic Link. (UNIX only.)
N Normal. (No attribute flags set.)

Option keyword ALL may be specified to indicate that all directory entries are to be included.

Unless ALL is specified, multiple DIRTYPE options may be specified as an unquoted literal or as a quoted character
constant. Blanks and comma characters may be specified and are ignored if the DIRTYPE options are supplied as a
quoted character constant.

The default directory entry selection may be set using the DIRTYPE environment option, otherwise the default is 'A,N,R'.

DSN fileid
Specifies the name of the input file. See fileid for details.

If no fname is specified on a READ operation which uses DSN, then an fname of DEFAULTF is used by default.

DSNPFX | NODSNPFX
USERID | NOUSERID
UID | NOUID
DSNPFX YES | DSNPFX NO

Applicable only in z/OS where fileid identifies an unquoted data set name belonging to a PDS/PDSE library or a sequential
or VSAM data set.

If fileid is an unquoted literal or an unquoted value identified by a declared variable or field definition, then DSNPFX will
prefix the value with the one of the following:

The ACF userid assigned to the job if running in batch.◊
The current TSO prefix if running in a TSO/E environment.◊

If specified on the READ operation, DSNPFX, NODSNPFX or one of their synonyms will override the current value of the
DSNPFX environment option for that input file only. If not specified on READ and DSNPFX (YES) is the environment
default, SELCOPY will first attempt to open the file using a data set name prefix. If that fails, SELCOPY will attempt to
open the file without a data set name prefix.

EOL CRLF | CR | LF | NO | constant
Applicable only to RECFM U input of Windows and Unix-like files, EOL defines the end-of-line characters for which
SELCOPY will scan when de-blocking records from data in the input buffer.

The representation of each EOL argument is as follows:

EOL ASCII EBCDIC Description
CRLF X'0D0A' X'0D15' Default for Windows, z/OS HFS/ZFS and z/VM BFS.
LF X'0A' X'15' Default for Linux and Unix file systems.
CR X'0D' X'0D'
constant A quoted or hex character constant of any length.
NO No end-of-line characters are used.

By default, SELCOPY will scan for CRLF, LF and CR end-of-line characters as record delimiters.

EOL constant specifies a non-standard combination of characters to be used to delimit each input record. EOL NO
indicates that records have no end-of-line characters, in which case the input record will be of length equal to the value
currently assigned to the variable LRECL.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 211

ESDS
Applicable to IBM VSAM data sets (z/OS and z/VM CMS) and Micro Focus VSAM files. ESDS identifies the input file as a
VSAM ESDS (entry sequenced data set) or a Micro Focus variable length record sequential file.

For existing z/OS VSAM data sets, parameter ESDS does not need to be specified as SELCOPY automatically identifies
the access method and file organisation of the input file.

For all Micro Focus indexed, relative and record sequential files, parameters VSAM, KSDS, ESDS and RRDS are
synonymous and indicate only that input is to be performed via the Micro Focus file handler.

FILE fname | CARD | CLIP | DUMMY | STDIN | SYSIN
F

Identifies the name to be assigned to the input data stream. This name may then be used to reference the individual input
data object within the SELCOPY control statements. See description of File Name for further details.

The value fname is a programmer defined name to be used for the file, SELCOPYi list or ODBC database table input
specified by the DSN, LIST, TABLE or SQL parameter. It may only be specified as an unquoted literal.

On z/OS and z/VM CMS systems, fname may be a ddname which has already been allocated to a file object via a z/OS
TSO ALLOC or JCL DD statement, or a z/VM CMS FILEDEF or DLBL command. If this is the case, no input data object
reference (DSN, LIST, TABLE or SQL) is required on the READ operation.

If fname is not already an allocated ddname and DSN fileid references a z/OS sequential data set or PDS/PDSE library
member, then SELCOPY will dynamically allocate fname to fileid. This is necessary since z/OS access methods require
an allocated ddname to perform an open and subsequent I/O on a data set. By default the data set is allocated to fname
with DISP=SHR.

Special instances of fname exist to identify the specific input data objects as follow:

CARD Input is from the same source as the control statements. All records that follow the END operation
are input to READ CARD.

Unless SELCOPY program parameter -ctl has been specified, CARD, STDIN and SYSIN are
synonymous.

CLIP For Microsoft Windows only, input is from the Windows clipboard.
DUMMY Input is from a dummy object source. No open is performed and the EOF condition is set following

the first execution of READ DUMMY.
STDIN or
SYSIN

Input is from the standard input stream (stdin). It is primarily used in Windows and POSIX
environments to read output data piped from another application.

STDIN and SYSIN are synonymous.

The fname value (or any of the special instances) may be specified with or without the FILE parameter keyword.

FILL char
PAD

If a work area has been defined, FILL specifies a single character, represented by a character constant, which will be used
to pad an input record to the length of the previous record read from fname.

If the input record has a length which is greater than or equal to that of the previous record read, then no padding is
required. Beware that, if a different INTO position is specified on READ operations for the same fname, record padding
will occur for data at the input position to which the record is read. For example, in the following, padding will occur for
data read into position 501 and data at position 1 is unchanged.

 READ INDD dsn='c:\tmp\vardata.txt' INTO 1 FILL=X * 1st record is long.
 READ INDD INTO 501 * 2nd record is short.

The default pad character is set by environment option, FILL. Otherwise, the default is a blank.

FMT select_clause
Applicable to ODBC table input where a table or view is referenced via the TABLE parameter.

FMT specifies select_clause, a valid SQL select clause which includes the names of table columns (or expressions) that
constitute the result table, any alternate column names to be used and whether duplicate rows are included (ALL or
DISTINCT). The select_clause syntax is used as is to construct an SQL query statement for the input result table.

For details on select_clause syntax, please refer to SQL reference documentation for the DBMS to which the ODBC
connection will be made.

The select_clause value may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if select_clause is specified as a declared variable or field definition, then the object open, connection to the
database and execution of the SQL query is deferred until the READ operation is executed during selection time
processing.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 212

FWD
Applicable only to z/OS and z/VM CMS KSDS and ESDS input, and also to Micro Focus VSAM input. FWD specifies that,
when a sequential read is performed by the READ operation, the record that occurs following the current file input position
will be read. i.e. in a forwards direction.

For Micro Focus VSAM input and KSDS files only, the direction of sequential input may be reversed for file fname. (See
the BWD parameter)

Unless BWD has been specified on another READ operation for the same fname, specification of FWD is not necessary.
The default input direction is forwards (FWD).

HEADER
HEAD
HDR
HD

Applicable to ODBC table and SELCOPYi list input, HEADER indicates that the two SELCOPY generated header records
(column names and underline) are to be read as the first two input records.

INTO expr | DCLvar
Specifies the position in storage into which input records are to be read.

If the INTO position is specified as an arithmetic expression, expr, or a declared variable, DCLvar, of numeric or numeric
character data type, then a work area must be defined and the numeric value represents a position within the work area.

If the INTO position is a declared variable, DCLvar, of character data type, then the input record is a character value that
is assigned gets assigned to DCLvar following a successful execution of the READ (or CAT) operation.

If a work area has been defined, the default is INTO position 1.

KEY key
KEQ

Applicable only to files in which records are organised by a key field within the record data, KEY indicates that a direct
read is to be performed for the record containing the key field value specified by key.

The key value must be an exact match for the key field value in order to successfully read the record. It may be specified
as a character constant, a declared variable of character data type or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type
3 (field_nATp) field definition. If the length of key is shorter than the length of the key field, then it is padded with blanks to
match the key field length.

If key is a character constant, a default of STOPAFT 1 is implied. This may be overridden by specifying an explicit
STOPAFT value.

The VSAM access method and the Micro Focus file handler both have in-built support for keyed files (specifically VSAM
KSDS and Micro Focus Indexed files) which SELCOPY uses for key lookup. Note that key values in a VSAM KSDS need
not be unique if an alternate index is used to input the data set via a READ operation on a PATH DSN. If this is the case,
a direct read by key will return the record containing the first occurrence of that key value.

SELCOPY also supports keyed access to z/VM CMS, Windows and Unix-like files in which a key value, located at a fixed
position and length within each record, is used to organise records in ascending order of key sequence. To allow this, the
KEYPOS parameter must be specified on the READ operation to identify the key field position. The length of the key field
is implied by the length of key. However, if the length of key does not match the length of the key field or another READ
KEY operation exists for fname where the length of the supplied key value is greater than that of key, then KEYLEN must
be included to specify the key field length.

Keyed access to Windows and Unix-like files is supported for fixed, variable and undefined record formats, but not for
variable formats of type RECFM V2, V3 or MFV. If the record format is variable, then specification of LRECL is mandatory
in order to provide a maximum record length with which SELCOPY can validate RDW fields. Since LRECL on a READ
operation implies RECFM F, specification of RECFM V would also be necessary.

KEYLEN int
KL

Applicable to direct read by key of a z/VM CMS, Windows or Unix-like file, KEYLEN specifies an integer constant value,
int, which is the length of the key field within the record data.

This parameter is required if the length of the key value on the first direct READ operation for fname is less than the actual
key field length.

See KEY for details of direct read by key.

KEYPOS int
KP

Applicable to direct read by key of a z/VM CMS, Windows or Unix-like file, KEYPOS is mandatory and specifies an integer
constant value, int, which is the position of the key field within the record data.

See KEY for details of direct read by key.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 213

KGE key
Like KEY, KGE performs a direct read of a record in a keyed file except that, if no match is found for key, the first record
containing a key value which is greater than key is returned.

KSDS
Applicable to IBM VSAM data sets (z/OS and z/VM CMS) and Micro Focus VSAM files. KSDS identifies the input file as a
VSAM KSDS (key sequenced data set) or a Micro Focus indexed sequential (IDXFORMAT 3, 4 or 8) file.

For existing z/OS VSAM data sets, parameter KSDS does not need to be specified as SELCOPY automatically identifies
the access method and file organisation of the input file.

For all Micro Focus indexed, relative and record sequential files, parameters VSAM, KSDS, ESDS and RRDS are
synonymous and indicate only that input is to be performed via the Micro Focus file handler.

LIST list_command
Applicable to z/OS and z/VM CMS, LIST identifies the READ operation as being for SELCOPYi list input.

LIST specifies list_command, one of the supported SELCOPYi list commands, that generates a table of listed objects.
Optionally specifying SELECT, WHERE and SORT parameter values, selection of list columns, and filtering and sorting of
list rows may be performed before the rows are read by the SELCOPY program.

If no fname is specified for LIST input, then an fname of DEFAULTF is used by default.

The list_command SELCOPYi list command syntax may be specified as a quoted character constant, a declared variable
of character data type or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if list_command is specified as a declared variable or field definition, then the open (i.e. generation) of the list
table is deferred until the READ operation is executed during selection time processing. Therefore, the declared variable
names, generated for each input column when the list table is opened, may only be referenced in SELCOPY control
statements if list_command is a quoted character string.

LRECL int
RECSIZE
L

Specifies the maximum input record length for fname. If specified on a READ operation without also specifying RECFM,
LRECL implies fixed length record format (RECFM F) input.

For z/OS spanned record input (RECFM=VS or VBS), LRECL specifies the maximum length of a spanned record (default
64K). If the length of a spanned input record exceeds this value, then ERROR 581 is returned. Otherwise, LRECL should
never be specified on z/OS data set, CMS file or IBM VSAM data set input. For these types of file input, the maximum
input record length is always determined by standard access method processing. If an LRECL value is specified that does
not match the allocated LRECL value, then a file geometry conflict error will be returned.

LRECL is tolerated and ignored if specified on the READ operation for LIST, ODBC table or Micro Focus VSAM input.

For Windows and Unix-like files, including Windows clipboard (CLIP) input, LRECL overrides the maximum record length
imposed by the explicit or implied BLKSIZE value. The maximum input record length is determined as follows:

The value specified on parameter LRECL.1.

For undefined length record format (RECFM U), the maximum record data length is equal to the size of the input
buffer (BLKSIZE) minus the length of the EOL character(s). If EOL is not specified for fname, the default EOL
character length is 2.

2.

For all other record formats (RECFM F, V, VB, V2, V3 and MFV), the maximum record data length is the size of
the input buffer (BLKSIZE).

3.

For fixed length record format (RECFM F) input, the maximum record length is the actual length of each input record.

For undefined record format (RECFM U) input, a record exceeding the maximum length will be chopped and treated as
though an EOL character was found. The remainder of the record will be treated as a new record.

For variable length record format (RECFM V, VB, V2, V3 and MFV) input, ERROR 537 (RECFM=V BDW/RDW value
exceeds BLKSIZE or LRECL) is returned if a record is read with a value in the length field prefix that exceeds the
maximum record length value.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

ODBCPASS pass
OPASS
PASSWORD
PASSWD
PASS

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 214

Applicable to ODBC table input, ODBCPASS specifies the password (pass) to be used, together with the associated user
name (see USER parameter), when connecting to the data source via ODBC. Note that a user name and password is
mandatory for connection to any data source.

pass must be specified as a character constant and its specification will override the prevailing value set by the
ODBCPASS environment option.

RAW
For DIR and DIRDATA input of Windows and Unix-like files only, RAW may be specified to prevent SELCOPY formatting
of the directory entries.

The content of the physical directory entry as returned by the readdir() C function is returned as the directory record. This
may be useful if a directory record is read with an unknown directory type (DIRTYPE).

RBA byte_num
Applicable only to VSAM ESDS, Micro Focus record sequential and Windows and Unix-like files.

RBA indicates that a direct read is to be performed for a record at the relative byte address specified by byte_num (e.g.
RBA 0 is always the relative byte address or the first record). The byte_num value may be specified as a numeric
constant, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition. If a field definition is used
without a TYPE specification, the default is TYPE=P.

If rba is a numeric constant, a default of STOPAFT 1 is implied. This may be overridden by specifying an explicit
STOPAFT value.

The VSAM access method and Micro Focus file handler have in-built support for ESDS data sets and record sequential
files respectively. SELCOPY utilises this functionality to perform record lookup by RBA on these types of file. To
successfully perform a direct read by RBA on an ESDS or record sequential file, byte_num must be the RBA of the first
byte of a record.

SELCOPY supports direct access by RBA on all Windows and Unix-like files except for those with record format
represented by RECFM V2, V3 or MFV. Unlike ESDS files, a direct read by RBA will be successful if byte_num references
any RBA within the file that does not reference addresses beyond position 1 of the last record. If byte_num is not the RBA
of the first byte of a record, then the record that follows will be returned. Therefore, the value of internal field RBA, which is
the RBA of the last record read, may be higher than that specified by byte_num.

If the record format is variable (RECFM V or VB), specification of the LRECL parameter is mandatory in order to provide a
maximum record length with which SELCOPY can validate RDW fields. Furthermore, if the variable length records contain
a key field, as described by KEY, then KEYLEN and KEYPOS parameters may also be specified to further improve RDW
field validation.

RDW | NORDW
Specifies whether or not the Record Descriptor Word (RDW), which exists before all RECFM V, VB, V2, V3 and MFV
(variable length record format) records, is to be presented as part of the input record data and therefore included in the
value assigned to variable LRECL.

Beware that, if RDW is specified for a variable length file which is also the prime input object, then, for any WRITE
operation, the length of the RDW field is added to the FROM parameter address and deducted from the output data
length.

The default is set by environment option, RDW or NORDW. For z/OS, the product default is set by CBLNAME option
SRDW=Yes or No. Otherwise, the product default is NORDW.

REC record_num
Applicable only to VSAM RRDS, Micro Focus Relative and z/VM CMS files, and also to Windows and Unix-like files
processed as RECFM F.

REC indicates that a direct read is to be performed for a record with the record number specified by record_num. This
record number value may be specified as a numeric constant, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3
(field_nATp) field definition. If a field definition is used without a TYPE specification, the default is TYPE=P.

If record_num is a numeric constant, a default of STOPAFT 1 is implied. This may be overridden by specifying an explicit
STOPAFT value.

The VSAM access method and the Micro Focus file handler both have in-built support for numbered record files
(specifically VSAM RRDS and Micro Focus Relative files) and standard CMS file input supports direct read by record
number. SELCOPY uses these facilities to perform its record lookup.

SELCOPY supports direct access by record number on Windows and Unix-like files only if they contain fixed length
records. Parameter LRECL should be used to specify the length of the records.

RECFM F | FB | U | V | VB | V2 | V3 | MFV
Specifies the input record format for fname as follows:

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 215

F Fixed length records.
FB Fixed length blocked records.
U Undefined length records.
V Variable length records.
VB Variable length blocked records.
V2 Variable length records with 2-byte length fields.
V3 Variable length File Transfer Protocol (FTP) Block Mode records.
MFV Variable length Micro Focus record sequential records.

RECFM U may be specified on input of a z/OS data set if record blocks (physical records) are to be processed as single
input records. In this case the LRECL value is the allocated BLKSIZE value. Otherwise, RECFM should not be specified
for input of a z/OS data set, CMS file or IBM VSAM data set. For these types of file input, record format is always
determined by standard access method processing.

RECFM is tolerated and ignored if specified on the READ operation for LIST, ODBC table or Micro Focus VSAM input.

For Windows and Unix-like files including Windows clipboard (CLIP) input, RECFM specifies the format of input data. The
default is RECFM U, where records are delimited by end-of-line characters.

See Data Record Format for details of the different RECFM types.

RRDS
Applicable to IBM VSAM data sets (z/OS and z/VM CMS) and Micro Focus VSAM files. RRDS identifies the input file as a
VSAM RRDS (relative record data set) or a Micro Focus relative file.

For existing z/OS VSAM data sets, parameter RRDS does not need to be specified as SELCOPY automatically identifies
the access method and file organisation of the input file.

For all Micro Focus indexed, relative and record sequential files, parameters VSAM, KSDS, ESDS and RRDS are
synonymous and indicate only that input is to be performed via the Micro Focus file handler.

SELECT select_clause
SEL

Applicable to SELCOPYi list input only, SELECT defines a subset of the list columns and the order in which they are to be
presented for each input list record.

SELECT specifies select_clause, a valid SELCOPYi list window SELECT clause. See the "SELCOPYi Reference and
User Guide" for details.

The select_clause may be specified as a quoted character constant, a declared variable of character data type or a Type
1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if select_clause is specified as a declared variable or field definition, then the open (i.e. generation) of the list
table is deferred until the READ operation is executed during selection time processing.

SEP char | OFF
Applicable only to ODBC table input, SEP specifies a character constant value (char), a single character that is used to
separate each table column in the input record. The same separator character is used in the generated header records.

By default, char is set to "|" (the OR symbol).

SORT order_by_clause
Applicable only to SELCOPYi list input and ODBC table input using parameter TABLE, SORT defines the order in which
list entries or table rows will be presented to the READ operation.

SORT specifies order_by_clause which, for SELCOPYi list input, is valid SELCOPYi list window SORT clause syntax. See
the "SELCOPYi Reference and User Guide" for details.

For ODBC table input, order_by_clause is a valid SQL order-by clause which, together with an "ORDER BY" prefix, is
used to construct an SQL query statement for the input result table. For details on order_by_clause syntax, please refer to
SQL reference documentation for the DBMS to which the ODBC connection will be made.

The order_by_clause may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if order_by_clause is specified as a declared variable or field definition, then the object open is deferred until the
READ operation is executed during selection time processing.

SORT is also a synonym for SORTDIR.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 216

SORTDIR
SORT

For DIR and DIRDATA input of Windows and Unix-like files only, SORTDIR may be specified to read directory entries
ordered by one of the following:

Code Sort Order
D or T Date. i.e. The file's last-changed timestamp). Entries are processed in descending (D) or ascending (T)

order of date.
X or E Fileid extension. i.e. The qualifier following the last dot/period. Entries are processed in descending (X)

or ascending (E) alphabetical order.
M or N Fileid name. i.e. All qualifiers preceing the last dot/period. Entries are processed in descending (M) or

ascending (N) alphabetical order.
H or P Fileid path. i.e. The directory path including the fileid name. Entries are processed in descending (H) or

ascending (P) alphabetical order.
S or Z File size. Entries are processed in descending (S) or ascending (Z) order of size.
0 or NO Unsorted in the order returned by the system.

The default directory input order may be set using the SORTDIR environment option, otherwise the default is 0 (unsorted).

SQL full_select
Identifies the READ operation as being for ODBC table input.

For ODBC database input, SQL specifies a valid SQL query statement (full_select) that will generate a result table. Use of
SQL with a query statement is an alternative to specifying TABLE, FMT, WHERE, SORT and UPD parameters. It is also a
more flexible method since a result table may be composed of data from more than one table or view. Please refer to SQL
SELECT documentation for the DBMS to which the ODBC connection will be made.

If no fname is specified for SQL input, then an fname of DEFAULTF is used by default.

The full_select statement may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if full_select is specified as a declared variable or field definition, then the object open, connection to the
database and execution of the SQL query is deferred until the READ operation is executed during selection time
processing. Therefore, the declared variable names, generated for each input column when the table is opened, may only
be referenced in SELCOPY control statements if full_select is a quoted character string.

SSN source
Applicable to ODBC table input, SSN specifies the ODBC data source name (source) to which the ODBC connection will
be made. Note that specification of an ODBC source name that has been defined to the local system, is mandatory for
ODBC table input.

source must be specified as a character constant and its specification will override the prevailing value set by the SSN
environment option.

STARTKEY key
START

The first execution of a READ operation with STARTKEY will perform a direct read of a record in a keyed file as described
for KEY. Subsequent executions of the same READ operation will thereafter perform sequential reads of the same fname
from the current input position.

Unlike KEY, STOPAFT 1 is not implied if key is a constant value.

STARTKGE key
READ STARTKGE performs the same processing as READ STARTKEY, except that, if no match is found for key, the first
record containing a key value which is greater than key is returned.

ERROR 544 is returned only if key is greater than all the record key field values.

STARTRBA byte_num
The first execution of a READ operation with STARTRBA will perform a direct read of a record based on its relative byte
address as described for RBA. Subsequent executions of the same READ operation will thereafter perform sequential
reads of the same fname from the current input position.

Unlike RBA, STOPAFT 1 is not implied if byte_num is a constant value.

STARTREC record_num
The first execution of a READ operation with STARTREC will perform a direct read of a record based on its record number
as described for REC. Subsequent executions of the same READ operation will thereafter perform sequential reads of the
same fname from the current input position.

Unlike REC, STOPAFT 1 is not implied if record_num is a constant value.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 217

STOPAFT int
See common parameter STOPAFT for details.

SUBDIR int
SUB

For DIR and DIRDATA input of Windows and Unix-like files only, SUBDIR may be specified to identify the number of
levels (int) of nested sub-directory entries to be included for input. e.g. SUBDIR 1 will only read directory entries for files in
the specified (or current) directory, and in all directories whose sub-directory name exists in the specified (or current)
directory.

The default number of nested directory levels may be set using the SUBDIR environment option, otherwise the default is 0
(files in the current directory only). If SUBDIR is specified without int, a default value of 255 is used.

NOSUB is a synonym for SUBDIR 0.

TABLE table_name
TAB

Identifies the READ operation as being for ODBC table input.

For ODBC database input, TABLE specifies the name of a table or view (table_name) to be read. SELCOPY will construct
an SQL query statement using the value specified on TABLE and any values specified for optional parameters FMT,
WHERE, SORT and UPD. Use of TABLE and its associated parameters is an alternative to specifying the SQL parameter
with an SQL query statement.

If no fname is specified for TABLE input, then an fname of DEFAULTF is used by default.

The table_name value may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if table_name is specified as a declared variable or field definition, then the object open, connection to the
database and execution of the SQL query is deferred until the READ operation is executed during selection time
processing. Therefore, the declared variable names, generated for each input column when the table is opened, may only
be referenced in SELCOPY control statements if table_name is a quoted character string.

TABS int
For Windows and Unix-like files which contain tab characters (x'09'), TABS optionally specifies int, an integer constant
value, which is used to identify tab columns. If TABS is specified without int, the default value is 8.

Tab columns are positions within the input record data that are multiples of the value int. Where a tab character is found
within the input record, then, unless already aligned at a tab column, the data that immediately follows is padded with
blanks to the next tab column.

If TABS is specified, then definition of a work area is mandatory, otherwise ERROR 578 is returned.

The default is to process tab characters as data.

TIMES int
See common parameter TIMES for details.

UPD
Indicates that fname is to be opened for update to allow subsequent execution of SELCOPY UPDATE, INSERT and
DELETE operations.

Processing for update is necessary for update-in-place of records in a z/OS data set or library member, and also for
update-in-place, delete and insert of records in a VSAM data set.

However, Windows and Unix-like files, z/VM CMS files and Micro Focus VSAM files may be updated without specific
update processing. Therefore, specification of UPD is unnecessary for these types of data object.

UPD update_columns
Applicable only to ODBC table input using parameter TABLE, UPD identifies the input table columns that are eligible for
update by an UPDATE operation.

UPD specifies update_columns which is a comma separated list of column names which, together with a "FOR UPDATE
OF" prefix, are used to construct an SQL query statement for the input result table. For details on update_columns syntax,
please refer to SQL reference documentation for the DBMS to which the ODBC connection will be made.

The update_columns may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if update_columns is specified as a declared variable or field definition, then the object open is deferred until the
READ operation is executed during selection time processing.

The parameter keyword UPD also applies to file object input.

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 218

USER userid
Applicable to ODBC table input, USER specifies the user name (userid) to be used, together with the associated
password (see ODBCPASS parameter), when connecting to the data source via ODBC. Note that a user name and
password is mandatory for connection to any data source.

userid must be specified as a character constant and its specification will override the prevailing value set by the USER
environment option.

VSAM
Applicable to IBM VSAM data sets (z/OS and z/VM CMS) and Micro Focus VSAM files. VSAM identifies the input file as
one of the supported VSAM data set types (KSDS, ESDS or RRDS) or as one of the supported Micro Focus file types
(indexed, record sequential or relative).

For z/OS VSAM data sets, parameter VSAM does not need to be specified as SELCOPY automatically identifies the
access method and file organisation of the input file.

For all Micro Focus indexed, relative and record sequential files, parameters VSAM, KSDS, ESDS and RRDS are
synonymous and indicate only that input is to be performed via the Micro Focus file handler.

WHERE search_condition
Applicable only to SELCOPYi list input and ODBC table input using parameter TABLE, WHERE defines a filter for which
matching list entries or table rows will be selected for input.

WHERE specifies search_condition which, for SELCOPYi list input, is valid SELCOPYi list window WHERE clause syntax.
See the "SELCOPYi Reference and User Guide" for details.

For ODBC table input, search_condition is a valid SQL search condition which, together with a "WHERE" prefix, is used to
construct an SQL query statement for the input result table. For details on search_condition syntax, please refer to SQL
reference documentation for the DBMS to which the ODBC connection will be made.

The search_condition may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if search_condition is specified as a declared variable or field definition, then the object open is deferred until
the READ operation is executed during selection time processing.

WORKLEN int
WORKAREA
WORKA
W

Valid only if specified on the prime input READ operation and only then if WORKLEN is not specified via an OPTION
operation.

WORKLEN specifies an integer constant value int and indicates that a user work area is to be defined with a number of
characters equal to int.

The work area will be initialised with blank characters. If a different character is to be used to initialise the work area, then
WORKLEN should be specified on an OPTION operation instead, together with a FILL option value.

WTO
Indicates that, at SELCOPY end-of-job, a summary of the number of records read from fname will be logged to
stderr/SYSOUT. The logged output will have the following format:

 SELCOPY/xxx r.el #records=RECTOT FILE=fname yyyy/mm/dd hh:MM

Chapter 4. SELCOPY Operations READ

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 219

ODBC Table Read

This feature is currently supported on Microsoft Windows platforms only,

Database table input is supported for a variety of proprietary database products using ODBC (Open Database Connectivity).

ODBC is an API (Application Programming Interface) that SELCOPY uses to access most of the popular databases supporting
SQL (Structured Query Language). Each DBMS (DataBase Management System) has its own driver which translates the SQL
statements as required.

Specification of a system name, ODBC userid and password is mandatory to identify the ODBC Data Source Name for the required
database and to establish the user's access authority to the database tables. Similarly, a user work area must also be defined
which has a length which is greater than or equal to the input record (table row) length. If no work area is defined, ERROR 586 is
returned.

All column values are presented in a fixed length character data type format, are left adjusted within the column area and padded
with blanks to the width of the column area. The width of each column area is the greater of the length of the column name and the
length of the column data.

For table columns of fixed or variable character data type, the length of the column data is the maximum defined for the column.
For numeric data types, values are converted to character decimal format and have a column data length equal to the minimum
length required to display the maximum and minimum values supported by the column definition.

The format and length of data returned by the SQL query for database columns of signed numeric and date data types are as
illustrated in the table below. Note that, for all numeric data types except FLOAT and DOUBLE, non-significant zero digits are
suppressed. Similarly, negative values are prefixed with "-" (minus), however, positive values are implied and so no sign prefix is
included.

Data Type Display Length Format
SMALLINT 6 [-]nnnnnn

(-32768 to 32767)

INTEGER 11 [-]nnnnnnnnnn
(-2177483648 to 2177483647)

BIGINT 20 [-]nnnnnnnnnnnnnnnnnnn
(-9223372036854775808 to 9223372036854775807)

DECIMAL(p,s) p+2 [-]n*(p-s)[.n*(s)]

FLOAT 13 [-]n.nnnnnnE[+/-]nn

DOUBLE 22 [-]n.nnnnnnnnnnnnnnE[+/-]nnn

DECFLOAT(16) 23 [-]n*(p-s)[.n*(s)]

DECFLOAT(34) 42 [-]n*(p-s)[.n*(s)]

DATE 10 yyyy-mm-dd

TIME 8 hh:MM:ss

TIMESTAMP 26 yyyy-mm-dd hh:MM:ss.nnnnnn

Header Records

Following open for input of a database result table, SELCOPY builds a header line comprising all the selected column names.
The column names are padded with blanks to the width of the column data and an optional separator character (default "|") is
used to identify the start and end of each column. If sufficient blank space is available within the column width, the length of that
column is also included in parentheses. e.g. "COL_NAME (14) "

A second header line, with a length equal to that of the first, is generated containing "-" (hyphen) symbols and the same,
optional separator characters and serves to underline the column names in the first header line.

The two header lines may be referenced by the variable length field at position FHDR. Furthermore, if the HEADER parameter
is specified on the READ operation, the header lines are returned as the first two input records read.

Column Declared Variables

Whether the database table is opened for a READ or WRITE (INSERT) operation, SELCOPY will generate declared variables
of fixed length character data type (CHAR), with names that match the column names selected for input or insert. Following
each READ operation, values assigned to these variables are updated to reflect the column values of the input row.

The source fields of these declared variables map storage starting at position 1 of the work area. Therefore, if table row data is
read into (or inserted from) a position other than position 1 of the work area, an offset must be applied to any reference of the
generated declared variable names. e.g. If data is read into position 101, the variable containing the current value of column
APILIB, would be referenced as APILIB+101-1.

Note that, if specification of READ operation values for SQL, TABLE, FMT, WHERE, SORT or UPD, are dynamic (i.e. specified
as a declared variable name or a field definition), then generated column name declare variables cannot be used. Since use of
dynamic values defer the database connection until the statement is executed during SELCOPY's selection time processing,
generation of the column name declare variables is delayed and their reference within SELCOPY syntax will trigger an error
during control statement analysis.

Chapter 4. SELCOPY Operations ODBC Table Read

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 220

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/10/15 15:59 PAGE 1
 --- ---------------- --------

 ** c:\nbj\slc\ssdb2m07.ctl *** L=001 --- 2015/10/15 15:59:36 (L05)

 opt worklen=8000 datawidth=80 cblsqlog 'c:\tmp\ssdb2m07.log'

 1. read indb2 \
 sql=" \
 select f.funcname, p.parmno, p.parmname, p.parmtype \
 from cblazos.cbl.zzsfunc f \
 inner join cblazos.cbl.zzsparm p \
 on f.apilib = p.apilib \
 and f.funcname = p.funcname \
 where f.funcname = 'P2D' \
 order by p.parmno \
 " \
 \
 ssn="DALLAS9" user="NBJ" odbcpass="%OPASS%" \
 sep="|" header

 2. print

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 1 1 2 FUNCNAME (20) |PARMNO|PARMNAME (20) |PARMTYPE (20) | 70
 2 2 2 --------------------|------|--------------------|--------------------| 70
 3 3 2 P2D |1 |Value |*Packed | 70
 4 4 2 P2D |2 |ValueLength |Integer | 70
 5 5 2 P2D |3 |Target |*Char | 70
 6 6 2 P2D |4 |TargetLength |Integer | 70
 7 7 2 P2D |5 |Flags |FlagWord | 70
 8 8 2 P2D |6 |Scale |Integer | 70
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 8 READ INDB2 2048 70 F 8 select f.funcname, p.parmno, p.parmname, p.parmtype from ...
 2 8

 ** SELCOPY/WNT 3.30.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 16. SELCOPYi ODBC Table Input.

SELCOPYi List Read

On z/OS and z/VM CMS systems, the SELCOPY Product Suite includes the SELCOPYi (interactive environment) product
component. SELCOPYi supports command syntax that generates and displays interactive lists of objects including DASD or CMS
mini-disk volumes, HFS/ZFS files, data sets and library members.

A list output from SELCOPYi is a table that provides detailed information on each included object. Like a database table read via an
ODBC connection, this list table may be read as input to a SELCOPY program using the LIST parameter. The value specified on
LIST is the SELCOPYi list command used to generate the list output.

Any of the following SELCOPYi list commands are supported by a SELCOPY READ LIST operation:

Command Description
AMS List SYSPRINT output from execution of an IDCAMS command.
CLD List the first occurrence of each member name in a library concatenation allocated to a specific DDname.
FL List CMS minidisk files.
FS List z/OS library members or CMS minidisk files for which a specified search string has been found.
GDG List cataloged Generation Dataset Groups.
LA List allocated z/OS and z/VM CMS ddnames.
LAS List z/OS VSAM associated objects.
LC List z/OS ICF catalog entries.
LCA List catalog aliases.
LD List z/OS cataloged data sets including information retrieved from the VTOC.
LJQ List z/OS enqueued resources for a specified job name.
LL List z/OS PDS/PDSE library members.
LPATH List z/OS HFS/ZFS files.
LQ List z/OS enqueued resources for a specified queue name.
LSG List SMS Storage Groups.
LSGV List SMS Storage Group Volumes.
LV List z/OS VTOC file entries.
LVOL List z/OS DASAD volumes or z/VM CMS mini disks.
LX List z/OS VTOC extents.

Chapter 4. SELCOPY Operations Column Declared Variables

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 221

Specific list columns may be selected and list entries may be filtered and sorted before being read by SELCOPY. This is achieved
using the READ operation SELECT, WHERE and SORT parameters respectively. SELECT, WHERE and SORT values correspond
to SELCOPYi command syntax for the SELECT, WHERE and SORT clauses supported by list windows.

A description of the syntax for each of the supported SELCOPYi list commands and for the SELECT, WHERE and SORT clauses
is found in the "SELCOPYi Reference and User Guide".

Like ODBC table read, LIST input has the following characteristics:

A work area is required.1.

Column values are presented in a fixed length character data type. Unlike ODBC table input, columns containing numeric
values are right adjusted within the column area.

2.

Header records are generated that are referenced by the FHDR internal field and may be included as record input using
the HEADER parameter. Unlike ODBC table input, a blank is used to separate each column and the second header
record uses a scale, which has the same format as the last scale line of the SELCOPY list print block, to underline each
column name. Note that the width of the scale underline for each column matches the maximum width of the column
values and not the column name length.

3.

Column declared variables are generated for each input list column.4.

 SELCOPY/MVS 3.30 at CBL - Bridgend UK (Internal Only) 2015/10/15 15:28 PAGE 1
 --- ---------------- --------

 ** NBJ.CTL(SSLST04) *** L=001 --- 2015/10/15 15:28:46 (NBJ)

 option worklen=100 datawidth=90

 1. read inlst \
 list "LD NBJ.CBL*.**" \
 select "Entry, Referenced, Org, Trks, Blksz, Lrecl, RecFm" \
 where "(Referenced >= '2015/01/01') AND (Org = 'PS')" \
 sort "Trks D" header

 2. print length=90

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 9 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 1 1 2 Entry Referenced Org Trks Blksz Lrecl RecFm 87
 2 2 2,....1....,....2....,....3....,....4....,....1,....,,, 87
 3 3 2 NBJ.CBLI.INI.D2015.Z 2015/01/26 PS 1200 10240 10240 FB 87
 4 4 2 NBJ.CBLATRAC 2015/09/07 PS 750 27998 512 VB 87
 5 5 2 NBJ.CBLILIBT.D2015288.T143214 2015/10/15 PS 15 1024 0 U 87
 6 6 2 NBJ.CBLI.INI 2015/10/15 PS 6 32760 32756 VB 87
 7 7 2 NBJ.CBLI330.INI 2015/04/09 PS 2 32760 32756 VB 87
 8 8 2 NBJ.CBLINST.CBL12075.SELCNAM 2015/08/11 PS 2 23476 256 VB 87
 9 9 2 NBJ.CBL.SMS.LST 2015/06/02 PS 1 2660 133 FBA 87
 10 10 2 NBJ.CBLI.WINX 2015/10/15 PS 1 27998 259 VB 87
 11 11 2 NBJ.CBLINST.CBL12075.SELCOPYI.INI 2015/08/11 PS 1 27998 259 VB 87
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 11 READ INLST 87 F 11 LD NBJ.CBL*.**
 2 11

 ** SELCOPY/MVS 3.30.002 2015/09/17 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 17. SELCOPYi List Data Set Input.

Chapter 4. SELCOPY Operations SELCOPYi List Read

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 222

Direct Read

Direct read is the ability to input a record from any location within a file without having to first read records that exist before or after
it. Note that, SELCOPY does not support direct read on CAT.

SELCOPY supports direct read for the following input file objects:

z/OS and z/VM CMS VSAM of KSDS, ESDS and RRDS organisation.•
z/OS MVS data sets and PDS/PDSE library members.•
z/VM CMS files.•
Micro Focus Indexed, Relative and Record Sequential files.•
Windows and Unix-like files.•

Supported methods of direct read are by record number (REC), relative byte address (RBA) and key field value (KEY).
Specification of READ keyword parameters, REC, RBA, KEY or KGE, with or without a START prefix, will indicate that a direct read
of the specified method is to occur.

Note that, not all methods of direct read are supported by the above file objects and, for CMS, Windows and Unix files, certain
criteria must also have to be met before particular methods of direct read are possible. Details of the type of file object supported
and any pre-requisite criteria that may exist, are documented for each parameter keyword (REC, RBA and KEY) that defines the
direct read method to be used.

A START prefix on the direct read keyword indicates that, following the initial direct read, subsequent executions of the same
READ operation will perform sequential reads of the same fname. The initial direct read will only ever be actioned once for the
individual READ operation, even if the file allocated to fname changes or is re-opened.

A successful direct read of fname will update the current input position within the file so that it points at the matching record.
Following the direct read, any sequential read on fname that occurs as a result of another READ operation or a START keyword
prefix, will input records based on this input position. Therefore, the first record read sequentially following the direct read will be the
record after (READ FWD) or preceding (READ BWD) the record that was read directly.

If a START prefix is specified, a direct read which fails to find a match for the requested record will return ERROR 544. Otherwise,
a direct read that fails in this way will have the following result:

If higher than the current SELCOPY return code value, internal variable RETCODE is updated to the value set by the
environment option RC_KEYNF (default 0).

1.

Variable LRECL is set to 25 reflecting the length of a generated input record which is returned containing the following
text:

 --- KEY/REC NOT FOUND ---

2.

On z/OS and z/VM CMS platforms, this generated record may be suppressed for all executions of SELCOPY via the
CBLNAME option SNotFoundMsg=No.

Note that a direct read will not set the end-of-file (EOF) condition. Any sequential reads that are performed subsequently on the
same fname may set this condition.

Chapter 4. SELCOPY Operations Direct Read

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 223

Directory Record Read

A directory entry exists, or is generated by SELCOPY, for each z/OS library member, z/VM CMS file or Windows or Unix-like file
read with parameter DIR or DIRDATA. Each directory entry is processed as a single input record and may contain meta data (e.g.
last changed timestamp, current file size) for the file to which it belongs.

Directory entries are read for files whose fileids match a supplied fileid mask which is assigned to fname. For z/OS PDS/PDSE
library directory input, the fileid mask may be a library DSN without a member name mask specification and may already be
allocated to a ddname referenced as fname. The directory entries of multiple PDS/PDSE libraries may be processed using the CAT
operation or by allocating a concatenation of libraries to fname before SELCOPY is executed.

Lengths of directory records vary but are reflected by the value of the LRECL variable following each directory record read. The
format of the directory information is differs depending on the type of file objects to which they refer.

z/OS PDS/PDSE Library Directory Records

Directory records exist for all members in a PDS or PDSE, in blocks of length 256.

The length of the directory entries may vary, due to the presence of user data, up to a maximum of 74 bytes.

Each directory record has a common header in the following format:

Decimal(Hex)
Offset

Type Length Description

0(0) Char 8 Member or alias name.
8(8) Char 3 Relative track and record number. (TTR)
11(B) Bit string 1 Indicator Byte.

1... Entry is an ALIAS.
.11. Number of TTRs in user data.
...1 1111 Length of user data in half words.

The remainder of the directory record is user data.

The user data for load library directory entries contain many load module attributes which are documented in the IBM
publication "z/OS MVS Program Management: Advanced Facilities." If updated by SELCOPYi or ISPF, all other libraries have
user data formatted as follows:

Decimal(Hex)
Offset

Type Length Description

12(C) Binary 1 Version Level.
13(D) Binary 1 Modification Level.
14(E) Binary 1 Reserved.
15(F) Binary 1 Last modified time second.
16(10) Date 4 Creation Date.
20(14) Date 6 Last modified date and time.
26(1A) Binary 2 Current number of records.
28(1C) Binary 2 Initial number of records.
30(1E) Binary 2 Modified number of records.
32(20) Char 8 Last modified by user name.
40(28) Char 2 Reserved.

If fname has been allocated to library concatenation, then the input record count, assigned to internal variable INCOUNT, will be
reset on the first read of each concatenated library. Furthermore, internal field, DSN, will be updated to reference the new library
data set name.

Note that, a PDS/PDSE library directory may be processed one block at a time by specifying RECFM U without DIR or
DIRDATA, thus reading the directory as a normal sequential file. Standard library directories flag an end-of-file (EOF) condition
at the end of directory input so no member data will be read.

Chapter 4. SELCOPY Operations Directory Record Read

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 224

SELCOPY/MVS 3.30 at CBL - Bridgend UK (Internal Only) 2015/10/15 16:40 PAGE 1
--- ---------------- --------

 ** NBJ.CTL(SSDIR02) *** L=001 --- 2015/10/15 16:40:14 (NBJ)

 option worklen=80 datawidth=60 pagewidth=80

 1. read indir1 dsn='CBL.PRD.SELC330.SZZSSAM1 (ZZSDB*) ' dir
 cat indir2 dsn='CBL.PRD.SELC330.SZZSDIST.IPO(ZZSGCFK*)' dir

 2. move 8 from fname to 51
 3. print type=b length=60

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0 ------

 1 1 3 ZZSDB2B N I NBJ INDIR1 42
 EEECCFC40100000101320123050D0C00DCD444444444444444CDCCDF4444
 9924222008DF1308130F143F980509005210000000000000009549910000

 2 2 3 ZZSDB2G � J NBJ INDIR1 42
 EEECCFC40000010201390132130D0D00DCD444444444444444CDCCDF4444
 992422700D5F1000101F130F22010A005210000000000000009549910000

 1 3 3 ZZSGCFKC g NBJ INDIR2 42
 EEECCCDC0000034501200128100B0800DCD444444444444444CDCCDF4444
 99273623037F1F01110F122F480707005210000000000000009549920000

 2 4 3 ZZSGCFKP | q JGE INDIR2 42
 EEECCCDD000002440120010414090700DCC444444444444444CDCCDF4444
 99273627039F1703110F130F580803001750000000000000009549920000
 ,....1....,....2....,....3....,....4....,....5....,....6

SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 4 READ INDIR1 256 256 U 2 CBL.PRD.SELC330.SZZSSAM1
 CAT INDIR2 256 256 U 2 CBL.PRD.SELC330.SZZSDIST.IPO
 2----3 4

 ** SELCOPY/MVS 3.30.002 2015/09/17 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 18. SELCOPY Directory Input for z/OS Library Members.

z/VM CMS File Directory Records

Directory records are generated by SELCOPY from FST data returned by read of CMS files with DIR or DIRDATA. The length
of the directory entries vary between 88 and 103 bytes, depending on the length of the file name, type and mode, and are
formatted as follows.

Decimal(Hex)
Offset

Type Length Description

0(0) Char 8 File name.
8(8) Char 1 Blank.
9(9) Char 8 File type.
17(11) Char 1 Blank.
18(12) Char 2 File mode.
20(14) Char 2 Blanks.
22(16) Char 10 Last modified date. (yyyy/mm/dd)
32(20) Char 1 Blank.
33(21) Char 8 Last modified time. (HH:MM:SS)
41(29) Char 1 Blank.
42(2A) Char 8 Number of records. Right adjusted with comma punctuation.
50(32) Char 1 Blank.
51(33) Char 8 LRECL value. Right adjusted with comma punctuation.
59(3B) Char 1 Blank.
60(3C) Char 2 RECFM.
62(3E) Char 1 Blank.
63(3F) Char 7 Number of blocks. Right adjusted with comma punctuation.
70(46) Char 1 Blank.
71(47) Char 6 Volume label.
77(4D) Char 1 Blank.
78(4E) Char 3 Link authorisation. (R/W or R/O)
81(51) Char 2 Blanks.
83(53) Char Variable

(max 20)
Fileid with dot/period separators. (fn.ft.fm)

Chapter 4. SELCOPY Operations z/OS PDS/PDSE Library Directory Records

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 225

 SELCOPY/CMS 3.30 at CBL - Bridgend UK (Internal Only) 2015/10/15 14:37 PAGE 1
 --- ---------------- --------

 ** SSDIR02 CTL A *** L=002 --- 2015/10/15 14:37:55 (VMNBJ)

 1. read 'S%%%%% MODULE *' dir
 2. print

 INPUT SEL SEL 1 RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 9 0 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 1 1 2 SABBEY MODULE A1 2007/09/25 10:51:12 7 80 V 1 PC05A R/W SABBEY.MODULE.A1 99
 2 2 2 SELUPD MODULE G1 2007/10/12 14:03:20 4 65,535 V 17 PC00G R/O SELUPD.MODULE.G1 99
 3 3 2 S310AZ MODULE I1 2012/03/08 15:23:34 4 65,535 V 32 PC00I R/O S310AZ.MODULE.I1 99
 4 4 2 SALIPL MODULE S2 2012/04/16 15:12:19 3 60,992 V 16 MNT190 R/O SALIPL.MODULE.S2 99
 5 5 2 SAVEFD MODULE S2 2011/09/27 14:10:18 2 3,752 V 1 MNT190 R/O SAVEFD.MODULE.S2 99
 6 6 2 SEGGEN MODULE S2 2011/09/27 14:10:19 3 29,800 V 8 MNT190 R/O SEGGEN.MODULE.S2 99
 7 7 2 SETKEY MODULE S2 2011/09/27 14:10:19 3 1,056 V 1 MNT190 R/O SETKEY.MODULE.S2 99
 8 8 2 SETPRT MODULE S2 2011/09/27 14:10:20 2 6,784 V 2 MNT190 R/O SETPRT.MODULE.S2 99
 9 9 2 SHRLDR MODULE S2 2011/09/27 14:10:21 4 2,552 V 1 MNT190 R/O SHRLDR.MODULE.S2 99
 10 10 2 SDB98P MODULE V1 2001/06/25 13:49:58 4 22,272 V 6 VM02V R/O SDB98P.MODULE.V1 99
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....0

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 10 READ S%%%%% 2048 2048 U 10 S%%%%%.MODULE.*
 2 10

 ** SELCOPY/CMS 3.30.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 19. SELCOPY Directory Input for z/VM CMS Files.

Windows and Unix-like File Directory Records

Directory records are generated by SELCOPY from readdir() dirent output for Windows and Unix-like files read with DIR or
DIRDATA, and may be of any length depending on the length of the full fileid file path.

The generated list of directories are filtered based on the DIRTYPE and SUBDIR parameters, and are sorted based on the
SORTDIR parameter.

DIRTYPE selects entries based on file attributes, and may also be used to include directory records that are not associated with
a file (e.g. sub-directories, volume id and the working (.) and parent (..) directories).

SUBDIR allows entries to be included for files that match the fileid mask and exist in a sub-directory of the working directory.
The number of nested sub-directory levels eligible for directory input is determined by the value specified for SUBDIR (default).
If SUBDIR is not specified, entries for files in sub-directories are not included (equivalent to SUBDIR 0).

SORTDIR may be specified to process directory records in a specified order: by fileid name, path, extension, size or timestamp.
By default, directory records are returned unsorted (SORTDIR NO or 0). i.e. in the order returned from the operating system.

Unless RAW is specified, the format of the directory records is as follow:

Decimal(Hex)
Offset

Type Length Description

0(0) Char 10 Last modified date. (yyyy/mm/dd)
10(A) Char 1 Blank.
11(B) Char 8 Last modified time. (HH:MM:SS)
19(13) Char 2 Blanks.
21(15) Char 6 Unix-like files only:

File type and permision flags as described by the st_mode field of the
stat struct. For details, see documentation for st_mode in the stat(2)
man page.

21(15) Char 7 Windows files only:
3 blank characters followed by 1 character each for applicable file
attributes in the following order: "a" (amended), "r" (read-only), "h"
(hidden) and "s" (system).

28(1C) Char 1 Blank.
29(1D) Char 8 Fileid name without the extension. "*" (asterisk) is displayed as the 8th

character if the length is greater than 8.
37(25) Char 1 Dot/period.
38(26) Char 3 Fileid extension (the fileid qualifier following the last dot/period). "*"

(asterisk) is displayed as the 3rd character if the length is greater than
3.

41(29) Char 1 Blank.
42(2A) Char 15 Number of bytes file size. Right adjusted with comma punctuation.
57(39) Char 2 Blanks.
59(3B) Char Variable The complete fileid including the file path.

Chapter 4. SELCOPY Operations z/VM CMS File Directory Records

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 226

 SELCOPY/LNX 3.20 at CBL - Bridgend UK (Internal Only) 2015/10/15 15:02 PAGE 1
 --- ---------------- --------

 option pagewidth=128

 1. read '/home/nbj/*' dir dirtype=DNY subdir=1 sortdir=D
 2. print stopaft=10

 INPUT SEL SEL 1 RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 9 0 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 1 1 2 2015/10/15 15:02:16 100644 ssdir01 .lst 0 /home/nbj/ssdir01.lst 80
 2 2 2 2015/10/15 15:02:14 100600 .viminfo. 3,864 /home/nbj/.viminfo 77
 3 3 2 2015/10/15 15:02:13 100644 ctlfile . 104 /home/nbj/ctlfile 76
 4 4 2 2015/10/15 15:02:13 100644 ssdir01 .ctl 104 /home/nbj/ssdir01.ctl 80
 5 5 2 2015/10/14 17:21:00 100600 .bash_h*. 10,832 /home/nbj/.bash_history 82
 6 6 2 2015/10/14 09:38:46 40700 88b63d3*. 4,096 /home/nbj/.pulse/88b63d335ff572654632a034 116
 +100 0000006f-runtime
 7 7 2 2015/10/14 09:38:26 40700 .gconf . 4,096 /home/nbj/.gconf 75
 8 8 2 2015/10/14 09:38:26 40700 .gconfd . 4,096 /home/nbj/.gconfd 76
 9 9 2 2015/10/14 09:38:26 100600 .xsessi*. 2,900 /home/nbj/.xsession-errors 85
 10 10 2 2015/10/14 09:38:26 100700 saved_s*. 52,527 /home/nbj/.gconfd/saved_state 88
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....0

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 10 READ * 2048 2046 U 10 /home/nbj/*
 *EOF*NOT*REACHED*
 2 10

 WARNING 4 = RETURN CODE FROM SELCOPY

 ** SELCOPY/LNX 3.20.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 20. SELCOPY Directory Input for Windows and Unix-like Files.

Chapter 4. SELCOPY Operations Windows and Unix-like File Directory Records

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 227

RETURN
Return processing from a SELCOPY sub-routine back to the caller.

Syntax:

>>-- RETURN ---><

Synonyms:

RETURN RET

Description:

The RETURN operation must be used to exit a SELCOPY internal sub-routine.

On execution of RETURN, processing control is passed back to the next executable statement following the DO operation that
called the sub-routine. This operation may be in the main processing loop or another sub-routine. It may also exist in the same
sub-routine if it has been called recursively. e.g. The following will recursively call a sub-routine to calculate a factorial value.

 DECLARE FVAL BIN INI=1 FORMAT='Z,ZZZ,ZZ9'

 @WVAL = 10
 DO FACTORIAL @WVAL FORMAT='Z,ZZZ,ZZ9'
 PRINT '10! = ' FVAL * Print result.
 EOJ

==FACTORIAL:== XX * Sub-routine with 1 input value.
 @WVAL = XX
 IF @WVAL = 0 !THEN RETURN * Return when XX=0
 MULT FVAL BY @WVAL
 DO FACTORIAL @WVAL-1 FORMAT='Z,ZZZ,ZZ9' * Recursive call.
=RETURN= * Return at end of sub-routine.

SELCOPY internal sub-routines are not private procedures and so all variable and field definitions are exposed to the routine. Any
changes made to variable and field definition values (including internal variable RETCODE) persist when control is passed back to
the calling routine or main processing loop.

Because of this RETURN does not support any parameter arguments that assign a return value.

Chapter 4. SELCOPY Operations RETURN

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 228

RIGHT
Right adjust text in a character source value.

Syntax:

 +- FROM --+ +-- TO --- source ---+
 | | | |
>>--- RIGHT -----+---------+-- source ----+--------------------+------------->
 | |
 +-- TO --- target ---+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

RIGHT ADJR

Description:

The text represented by the source character value is right adjusted and assigned to the target value. The target location may
overlap storage at the source value location and if target is not specified, then the source value is updated.

The source text value is right adjusted in an area of storage containing all blank characters and of length equal to the target value
field area if specified, otherwise the length of the source value field area.

 DECLARE PAGE CHAR(20) INI='Page'
 DECLARE PNO BIN INI=2 FORMAT=999
 RIGHT PAGE * ,....1....,....2....,
 PRINT PAGE ' ' PNO * Prints: " Page 002"

Multiple consecutive blank characters that exist between non-blank characters in the source value text, are condensed to a single
blank character in the right adjusted value. e.g.

 POS 101 = "Hello World " * ,....1....,....2
 RIGHT 15 AT 101 TO POS 1, 20 * To get: " Hello World"

Parameters:

FROM source
References the character text value to be right adjusted. source may be specified as a declared variable of character data
type, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) character field definition.

If TO target is specified, source may also be specified as a quoted or hex character constant.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of target is implied. Otherwise,
ERROR 69 is returned.

TO target
Identifies the declared variable or Type 1, 2 or 3 field definition that is the target of the operation. If source is a constant
value, then TO target is mandatory.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of source is implied.

Default is TO source.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of RIGHT for the same source and target values is unnecessary and so TIMES should never be used
on the RIGHT operation. See common parameter TIMES for details.

Chapter 4. SELCOPY Operations RIGHT

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 229

SLEEP
Pause program execution for a period of time.

Syntax:

 +-- SECs --------+
 | |
>>--- SLEEP ----- int ------+----------------+------------------------------->
 | |
 +-- MINs --------+
 | |
 +-- HOURs -------+
 +-- HRs ---------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

The SLEEP operation is supported in Windows and POSIX environments only.

During selection time processing, the SLEEP operation provides the capability of waiting on the system timer before proceeding
with execution of the next statement. This may be useful for a job that periodically checks for an event. e.g. receipt of an email or
completion of another process.

The duration of time for which processing is paused, may be specified in seconds, minutes or hours.

Parameters:

int SECS | MINS | HOURS | HRS
A positive decimal integer constant (int) specifying the number of seconds (SECS), minutes (MINS) or hours (HOURS or
HRS) to pause. Default is int SECS.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Example:

The following example illustrates how the SLEEP operation may be used to pause processing for 11 seconds before testing a
condition that changes with elapsed time. If the condition is true, the processing repeats until the condition tests false.

 ** g:\cc\slc\ctl\SSSLEEP1 ** L=001 --- 2000/12/28 17:57:22 (P21)
 option worklen=222 dw=60 noban
 do prtdat
 move 4 at DATE+64 to 201 * Save original "Secs since midnight" value.

 =waitloop=
 sleep 11 secs
 do some-rtn * (Perform some check for an event.)
 if * (If event not here yet.)
 then goto waitloop

 =gotit= * Event has occurred.
 cvdate NOW to datecb * Refresh the POS DATE Control Block with the time NOW.
 do prtdat
 * ,....1....,....2...
 pos 101 = 'Runtime = nnnn seconds.'
 sub 4 at 201 type=b from 4 at DATE+64 type=b into 4 at 205 type=b
 cvbc 4 at 205 to 111 format zzz9
 print from 101 length=60
 eoj

 =prtdat=
 move 19 at DATE-02 to 1
 cvbc 4 at DATE+64 to 21 format 'zzz,zz9'
 pos 29 = 'secs since midnight.'
 print length=60
 =return=

Figure 21. SLEEP operation sample usage.

Chapter 4. SELCOPY Operations SLEEP

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 230

SPACE
Write one or more blank lines to the SELCOPY list output.

Syntax:

 +-- 1 ---------+
 | |
>>--- SPACE -----+--------------+-->
 | |
 +-- n_lines ---+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

Execution of the SPACE operation will skip lines in the SELCOPY list output so that, when the next line of text is written to the
same page of the list output, blank lines occur before it. If SPACE follows execution of a PRINT operation, the blank line(s) will
occur within the print block.

Lines at the start of a page will not be skipped by a SPACE operation. If the next output occurs at the start of a new page, following
any page header lines, then a SPACE operation will have no effect. If lines are to be skipped at the start of a page then a value
must be assigned to internal variable LINE. (e.g. LINE=6 will write the next line of text at line 6)

Furthermore, if the number of lines to be skipped by a SPACE operation exceeds the number of lines remaining on the current
page, then a new page will be started immediately following the last output text line. No lines will be skipped at the start of that new
page to account for the difference.

Parameters:

n_lines
Indicating the number of lines to be skipped, n_lines may only be specified as a positive, non-zero integer constant value.

Default is 1.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Chapter 4. SELCOPY Operations SPACE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 231

STACK
Add an entry to the z/VM CMS program stack.

Syntax:

 +-- FIFO --+ +----------------------------+
 | | v |
>>--- STACK -----+----------+--+-+---- | Stack Element | -----+-----+-------->
 | | | |
 +-- LIFO --+ +---- NULL --------------------------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Stack Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Description:

Supported only in z/VM CMS environments, the STACK operation will add a line of text or a null line to the CMS program stack.

By default, a line is stacked FIFO (First-In, First-Out) so that it is added following any previously stacked lines of text. If parameter
LIFO (Last-In, First-Out) is specified, the line will be added and subsequently processed ahead of any previously stacked lines of
text.

Note that the length of the line of text to be stacked must not exceed 255 characters. This is a limitation of the CMS program stack.
The system return code value set by the execution of STACK is assigned to the internal variable RETSYS.

If the READ CARD operation is used, then stacked lines may be read as input to the same SELCOPY program. On completion of
the SELCOPY program execution, control is passed back to CMS and any line left in the program stack will be treated by CMS as a
command.

Beware that, if the SELCOPY program has been started from an application that has its own command processor (e.g. SELCOPYi
or XEDIT), then the lines remaining in the stack when the program finishes will be interpreted as application commands. If a
stacked command is to be executed by CMS and the SELCOPY program will always be executed from one of these types of
application, then prefixing the stacked command with CMS will ensure it is passed to CMS for processing. e.g.

 STACK "CMS COPY * * A = = B (OLDD"

Parameters:

Stack Element
Specifies an element that constitutes a portion of the stacked line of text.

Multiple stack elements are concatenated, in the order in which they are specified, to construct the complete line of text.

Stack element values that are of numeric or character numeric data type are automatically converted to decimal character
display format. Use &DCLVar to obtain the unformatted value of a numeric DCLVar.

Each stack element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type.

Chapter 4. SELCOPY Operations STACK

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 232

If specified as a type 1 field definition but without a length, the field will have a default length equal to the
prevailing value of variable LRECL. However, if parameter FORMAT is used to convert the field data to printable
hex, specification of a length is mandatory.

Although not necessary, keyword FROM may also be used before an stack element specified as a char_constant
or a DCLVar of character data type.

char_constant
A quoted or hexadecimal character constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for data specified by the
stack element.

The source data in a stack element of numeric data type is automatically converted to displayable character
format (using a CVxC operation). The length of the stack element is determined by fmt_string, not the length of
the stack element source.

For stack elements of character data type, fmt_string must be a printable hex format string for which a CVCH
(convert character to hex) operation will be performed.

For stack elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the stack element value is converted from its source numeric data type to the
decimal character display format described by the format string template.

For a stack element specified as an @variable, IntVar or DCLVar of numeric or character numeric data type, a
default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the fmt_string specified on
the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for @variable, IntVar and DCLVar representing an integer value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

FIFO | LIFO
Stack the line as FIFO (First-In, First-Out) following existing stacked lines, or LIFO (Last-In, First-Out) in front of existing
stacked lines.

Default is FIFO.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

NULL
EOF

Stacks a null line. When read as input from the stack, a null line will indicate end-of-file.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Example:

The following sample output is from a SELCOPY program that reads file list entries which match a CMS fileid mask with file type
"CTL" and file mode "A". The file name is supplied as a parameter to the program and can include wild card characters (in this case
"XS*").

Chapter 4. SELCOPY Operations STACK

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 233

The example demonstrates use of a conditional STACK operation to execute a CMS ERASE command for a temporary output file if
no input list entries exist.

 SELCOPY/CMS 3.30 at CBL - Bridgend UK (Internal Only) 2016/01/06 12:14 PAGE 1
 --- ---------------- --------

 EQU %1 XS*

 OPT DATAWIDTH=50

 1. DO INIT_OFILE STOPAFT=1 * Initialise Output file

 2. READ INLST LIST='FL %1 CTL A'

 IF EOF
 3. THEN DO CLEAN_UP
 4. THEN EOJ

 5. WRITE OWORK DSN='SSSTAC01 TEMP B'
 6. GOTO GET

 ==INIT_OFILE==

 7. WRITE OWORK 'Output from SSSTAC01 CTL (' FROM 19 AT DATE-2 ')'
 8. WRITE OWORK ' '
 9. =RETURN=

 ==CLEAN_UP==

 IF INCOUNT = 0
 10. THEN PLOG 'No entries found for: %1 CTL A'
 11. THEN PLOG 'Erasing report file SSSTAC01 TEMP B.'
 12. THEN STACK 'ERASE SSSTAC01 TEMP B'

 13. =RETURN=

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0 ------
 0 1 10 No entries found for: XS* CTL A 80
 0 1 11 Erasing report file SSSTAC01 TEMP B. 80
 ,....1....,....2....,....3....,....4....,....5

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 1
 2 0 READ INLST 105 F 0 FL XS* CTL A
 3----4 1
 5 0 WR OWORK 1032 46 V 2 SSSTAC01.TEMP.B1
 6 0

 =INIT_OFILE=
 7 1 WR OWORK 1032 46 V 2 SSSTAC01.TEMP.B1
 8 1 WR OWORK 1032 46 V 2 SSSTAC01.TEMP.B1
 9 1 =ret=

 =CLEAN_UP=
 10---13 1 =ret=

 ** SELCOPY/CMS 3.30.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 22. STACK a CMS command.

Chapter 4. SELCOPY Operations STACK

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 234

START
Start selection time processing which has been suspended.

Syntax:

>>--- START --->

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

START FILE=START

Description:

Execution of the START operation will place SELCOPY's selection time processing in a started state.

In started state, selection time processing will execute all condition operations and executable statement selections as dictated by
SELCOPY's standard logic flow. This is the default state for SELCOPY program execution.

The START operation is required to return processing to the started state having been placed in suspended state by the SUSP
operation. Note that the presence of a START operation within the control statements will also force selection time processing to
begin in the suspended state.

Execution of START, when processing is already in the started state, executes a null operation and the selection count is
unchanged. Otherwise, selection processing activity proceeds from the first statement following the START operation.

When processing in suspended state, SELCOPY will only execute prime input READ operations and IF operations for which a
conditional START operation is specified. Therefore, specifying START as an unconditional operation will have no effect.

Parameters:

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of START is unnecessary and so TIMES should never be used on a START operation. See common
parameter TIMES for details.

Example:

The following example reads a file containing report information for each branch office in an organisation and prints only the
information for branch offices referenced as H149. The input file is organised in ascending order of branch office number.

Because the START operation exists, processing begins in suspended state and is placed in the started state when the header
record for branch H149 is read. Having completed processing for branch office H149, end-of-job processing is started.

 READ MASTER * Report file for each branch office.

 IF POS 1 = 'H150' !THEN EOJ * Terminate after branch H149.
 IF POS 1 = 'H149' !THEN START * Header record for branch H149.

 PRINT * Only if in START state.

Chapter 4. SELCOPY Operations START

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 235

SUB
Performs an arithmetic subtraction of two, signed numeric source values, the result of which is assigned to a target variable or
stored in a target field.

Syntax:

 (2)
 +-- INTO source_2 --+
 (1) (2) | |
>>-- SUB --- source_1 -- FROM --+-- source_2 --+-------------------+-+------->
 | | | |
 | +-- INTO target ----+ |
 | (3) |
 | |
 +-- expr --------- INTO target ------+
 (3)

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) source_1 must be of numeric or character numeric data type and may be specified as a constant, an arithmetic
expression (expr), a declared variable or as a field definition of type 2 (field_p1p2) or type 3
(field_nATp).

(2) source_2 must be of numeric or character numeric data type and may be specified as a declared variable or as
a field definition of type 2 (field_p1p2) or type 3 (field_nATp).
If INTO target is specified, source_2 may also be specified as a constant value or an arithmetic
expression (expr).

(3) target may be specified as a declared variable or as a field definition of type 2 (field_p1p2), type 3
(field_nATp) or type 4 (field_pFMT).

Description:

Variables and field definitions that constitute the source values and target of the SUB operation may be of different numeric or
character numeric data types.

When the source and target values are of different data types and/or if an arithmetic expression or constant value is specified as a
source field, then values are converted to a common numeric data type prior to performing the subtraction. The selected common
data type will have a precision and scale which is sufficient to manage the maximum precision and scale of the resultant value.

Any rational number having a fraction value, will be stored internally as a double precision (8-byte) floating point number.
Therefore, all fields in the operation will be converted to double precision floating point data type and then floating point arithmetic
used.

If a target or source value is expressed as a field definition without a TYPE parameter, the default data type attributed to that field
will be the same as the first field definition within the command syntax to have TYPE specified. If no such field definition exists, the
default data type is packed decimal integer (TYPE=P). e.g.

 SUB 4 AT 1 TYPE=C FROM 4 AT 6 TYPE=B INTO 4 AT 11 * Default TYPE=C
 SUB 4 AT 1 TYPE=B FROM 4 AT 6 TYPE=C INTO 4 AT 11 * Default TYPE=B
 SUB 4 AT 1 FROM 4 AT 6 INTO 4 AT 11 TYPE=C * Default TYPE=C
 SUB 4 AT 1 FROM 4 AT 6 INTO 4 AT 11 * Default TYPE=P

Rounding will occur as required on the fractional part of the resultant value based on the number of fractional digits (scale) of the
target definition. e.g. If the target variable or field has no scale, the result will be rounded to the nearest integer value by adding 0.5
and dropping the fractional portion.

Parameters:

source_1
Represents a rational numeric value (subtrahend) that is to be subtracted from the value specified by source_2.

FROM source_2
Represents a rational numeric value (minuend) to which the value specified by source_1 will be subtracted.

Chapter 4. SELCOPY Operations SUB

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 236

If no target is specified, then source_2 is also the target of the operation. If this is the case, source_2 must be a declared
variable or a field definition.

expr
Represents a numeric or character numeric constant, or an arithmetic expression to be used as the minuend value.

Note that source_1 may also be specified in this way. The distinction is made for expr and source_2 because source_2
must be a valid target if INTO is not specified. Therefore, if expr is used, INTO target is mandatory.

INTO target
Identifies the declared variable or field definition that is the target of the operation and to which the resultant value
(difference) is assigned. If the second source value is expr, then target is mandatory.

If required, data conversion and decimal rounding will be performed on the resultant value before it is assigned to target.

Default is source_2 specified on the FROM parameter.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

 DECLARE GRAVITY FLOAT INI=9.80665 * Declared variable.

 EQU OREC 1001 * Output record area.

 OPTION WORKLEN 2000 * Work area buffer.

 @VAR = 8 AT 23 TYPE=P * Assign @variable value.

 SUB 18 FROM 4 AT 51 TYPE=B
 SUB 2.1 FROM 8 AT 23 TYPE=P INTO 8 AT 161 TYPE=F BIN
 SUB GRAVITY FROM 8 AT 161 TYPE=F BIN
 SUB @VAR FROM GRAVITY INTO OREC+12 FMT='S,SS9.99'

Return Codes:

0 Successful completion.

8 One of the following conditions has occurred:

target has defaulted to source_2, which is of data type binary or floating point, and arithmetic overflow has
occurred. i.e. A positive value has been subtracted from a negative value source_2 and the result is positive or
a negative value has been subtracted from a positive value in source_2 and the result is negative.

1.

The precision of target is not sufficient to contain the resultant value. Truncation has occurred with the loss of
significant digits.

2.

The first byte of a source or target field definition is within the work area but the last byte is located beyond the
end of the work area buffer. The length of the field is reduced so that the last byte of the field is the last byte of
the work area buffer.

3.

At least one source value is treated as being of packed decimal data type but the source data is invalid packed
decimal data.

4.

Chapter 4. SELCOPY Operations SUB

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 237

SUSP
Suspend selection time processing.

Syntax:

>>--- SUSP -->

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

SUSP FILE=SUSP

Description:

Execution of the SUSP operation will place SELCOPY's selection time processing in a suspended state.

For large prime input data objects in which only a small subset of the records/rows are to be processed, a SELCOPY program's
efficiency may be enhanced by suspending processing of the program's statements for all unrequired records/rows. For LIST and
ODBC table input, unrequired rows can be omitted using row filtering techniques. Therefore, SUSP is mainly used for file input
where record filtering is not supported by the I/O access methods and so must be performed by the SELCOPY program itself.

Whilst in suspended state, selection time processing will only execute the following:

Statements containing an IF/AND/OR condition operation for which a conditional START operation exists. e.g.

 IF POS 11 = 'E15'
 OR POS 11 = 'H12'
 THEN START

1.

Statements containing a READ operation for the prime input object.

Records/rows read from this object are not passed from the input buffer to a user defined work area or a character
declared variable source field. Therefore, if SUSP is used, specification of parameter INTO on the prime input READ
operation is invalid and will return an error.

2.

Processing of all other condition operations and executable statements will be bypassed until a START operation is executed.

Selection time processing is automatically placed in a suspended state if a START operation exists within the control statements.
Therefore, the SUSP operation is only required if processing is to be conditionally returned to a suspended state following
execution of a START operation. See the example below.

Parameters:

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of SUSP is unnecessary and so TIMES should never be used on a SUSP operation. See common
parameter TIMES for details.

Example:

The following example reads a file containing report information for each branch office in an organisation and prints only the
information for branch offices referenced as H149, H153 and H206. The input file is organised in ascending order of branch office
number.

Because the START operation exists, processing begins in suspended state and is placed in the started state when the header
record for branches H149, H153 and H206 are read. For all other branch offices in between, processing is returned to suspended
state.

Chapter 4. SELCOPY Operations SUSP

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 238

 READ MASTER * Report file for each branch office.

 IF POS 1 = 'H' * If the start of new branch office output.
 THEN IF POS 2 > '206' * If branch offices following 206.
 THEN EOJ * Terminate after branch 206.
 ELSE SUSP * Suspend processing all branches.

 IF POS 1 = 'H149' * Header record for 149 branch.
 OR POS 1 = 'H153' * Header record for 153 branch.
 OR POS 1 = 'H206' * Header record for 206 branch.
 THEN START * Activate required branches.

 PRINT * Only if in START state.

Chapter 4. SELCOPY Operations SUSP

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 239

SYSTEM
Execute a command in the controlling environment in which the SELCOPY program executes.

Syntax:

 +--------------------------------+
 v |
>>--- SYSTEM ----+---- | Command Element | -------+-------------------------->

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Command Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Synonyms:

SYSTEM SYS CMS DOS TSO UNIX

Description:

Supported in all environments except z/OS batch, the SYSTEM operation will pass a command string to the controlling
environment for execution. Selection processing will pause until control is passed back to the SELCOPY program following
completion of the command execution.

The system return code value set by the SYSTEM command execution is assigned to the internal variable RETSYS.

Supported environments are z/OS TSO, z/VM CMS and also Microsoft Windows and any of the Linux/Unix command shells.

Parameters:

Command Element
Specifies an element that constitutes a portion of the command text string.

Multiple command string elements are concatenated, in the order in which they are specified, to construct the complete
command string.

Command element values that are of numeric or character numeric data type are automatically converted to decimal
character display format. Use &DCLVar to obtain the unformatted value of a numeric DCLVar.

Each command element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type.

If specified as a type 1 field definition but without a length, the field will have a default length equal to the
prevailing value of variable LRECL. However, if parameter FORMAT is used to convert the field data to printable
hex, specification of a length is mandatory.

Although not necessary, keyword FROM may also be used before a command element specified as a
char_constant or a DCLVar of character data type.

Chapter 4. SELCOPY Operations SYSTEM

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 240

char_constant
A quoted or hexadecimal character constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for data specified by the
command string element.

The source data in a command element of numeric data type is automatically converted to displayable character
format (using a CVxC operation). The length of the command element is determined by fmt_string, not the length
of the command element source.

For command elements of character data type, fmt_string must be a printable hex format string for which a
CVCH (convert character to hex) operation will be performed.

For command elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the command element value is converted from its source numeric data type to
the decimal character display format described by the format string template.

For a command element specified as an @variable, IntVar or DCLVar of numeric or character numeric data type,
a default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the fmt_string specified on
the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for @variable, IntVar and DCLVar representing an integer value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Examples:

Example 1.

The following example invokes another SELCOPY program from the current SELCOPY program in a TSO environment. Note
that, the SELCOPY command line parameter "-lst" must be used to direct the list output to a different location from the current
SELCOPY execution.

 TSO "SLC / -lst=USER123.SELC.LST2.TMP !read indd !print stopaft 4 !end"

Example 2.

The following will issue TSO DELETE and ALLOC commands.

 SYSTEM "DELETE 'USER123.TEST.LOG' " STOPAFT 1
 TSO "ALLOC SHR REUSE F(INDD) DSN('USER123.TEST.RECFMV')" STOPAFT 1

Chapter 4. SELCOPY Operations SYSTEM

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 241

TRAN
Translate characters in a character source variable or field definition.

Syntax:

 +- FROM -+ +- TO -- source -+
 | | | |
>>--- TRAN --+--------+-- source --+- tabin -- tabout -+--+----------------+->
 | | | |
 +- TAB -- table ----+ +- TO -- target -+
 | |
 +- ASCII -----------+
 +- EBCDIC ----------+
 | |
 +- LOWER -----------+
 +- UPPER -----------+
 | |
 +- PRINT -----------+

 >---+-------------------------+--->
 | |
 +- HITS --+- @variable -+-+
 | |
 +- DCLvar ----+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Synonyms:

TRAN TR

Description:

Translate all characters belonging to a declared variable or field definition source value of character data type.

The hex representation (x'00' to x'FF') of each character in the source, identifies a code point offset into a single byte character set
(SBCS) translate table of length 256. The character found at that offset in the translate table is used to replace the original
character in the source value.

Individual character code points and their corresponding translation values may be specified using tabin and tabout parameters. All
characters in the source value that correspond to code points not referenced by tabin, translate without change. i.e. SELCOPY
constructs a temporary translate table whereby each code point offset references the offset value itself, then substitutes the values
specified by tabout at corresponding offsets specified by tabin. e.g.

 DECLARE TRVAL CHA INI='AaBbCcDd'
 TRAN TRVAL 'ABC' 'XYZ' TO POS 11 * Position 11: "XaYbZcDd"

Alternatively, a 256 character translate table may be constructed as a declared variable or field definition and then referenced by
TAB table in the TRAN operation. e.g. on an ASCII based system:

 DECLARE TRTAB CHA(256)
 DECLARE TRVAL CHA INI='AaBbCcDd'

 TRTAB = '-' FILL '-' * "-" in all 256 characters.
 POS &TRTAB+0x41 = 'ABC' * "ABC" at ASCII code points for "ABC".

 TRAN TRVAL TAB=TRTAB TO POS 21 * Position 21: "A-B-C---"

SELCOPY also supports a number of in-built translate tables for converting between ASCII and EBCDIC encoding, upper case and
lower case alpha, and for translating unprintable characters.

Parameters:

FROM source
References the character source value on which translation will occur. source may be specified as a declared variable of
character data type, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) character field definition.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of target is implied. Otherwise, a
length equal to the prevailing value assigned to variable LRECL is used.

Chapter 4. SELCOPY Operations TRAN

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 242

tabin tabout
Specifies input (tabin) and output (tabout) lists of characters. Each character in source that matches a character specified
by tabin is replaced by the corresponding character in tabout.

By default, the translate table used by the TRAN operation contains an ascending range of values from X'00' to X'FF'.
Thus, every character code point in source would be unchanged following a translation. tabin specifies a series of code
points within this translate table at which equivalent characters specified by tabout will be overlayed.

Both tabin and tabout may be specified as a character declared variable or as a quoted or hex character constant. The
length of tabin and tabout must be the same otherwise ERROR 145 is returned. The first character in tabin gets translated
to the first character in tabout, and likewise for second and subsequent characters in the tabin and tabout specification.

TAB table
Specifies table, the start position of a 256 character translate table to be used to translate characters in the source value.

table may be specified as a declared variable of character data type, or a Type 2 (field_p1p2) or Type 3 (field_nATp)
character field definition. table may also be specified as a Type 1 (field_pLENn) but without a length value.

The length of table must equal 256, otherwise ERROR 144 will be returned. If specified as a type 2 or 3 field definition, the
length of the field must be determinable by SELCOPY at control statement analysis. i.e. an arithmetic expression (expr)
defining the length, start and/or end position of the field must not contain variable values.)

ASCII
Indicates that SELCOPY's internal translate table for EBCDIC to ASCII conversion is to be used to translate characters in
the source value. The SELCOPY EBCDIC to ASCII translate table is as follows:

HEX -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0- 00 01 02 03 CF 09 D3 7F D4 D5 C3 0B 0C 0D 0E 0F
1- 10 11 12 13 C7 B4 08 C9 18 19 CC CD 83 1D D2 1F
2- 81 82 1C 84 86 0A 17 1B 89 91 92 95 A2 05 06 07
3- E0 EE 16 E5 D0 1E EA 04 8A F6 C6 C2 14 15 C1 1A
4- 20 A6 E1 FE EB 90 9F E2 AB 8B 9B 2E 3C 28 2B 7C
5- 26 A9 AA 9C DB A5 99 E3 A8 9E 21 24 2A 29 3B 5E
6- 2D 2F DF DC 9A DD DE 98 9D AC BA 2C 25 5F 3E 3F
7- D7 88 94 B0 B1 B2 FC D6 FB 60 3A 23 40 27 3D 22
8- F8 61 62 63 64 65 66 67 68 69 96 A4 F3 AF AE C5
9- 8C 6A 6B 6C 6D 6E 6F 70 71 72 97 87 CE 93 F1 80
A- C8 7E 73 74 75 76 77 78 79 7A EF C0 DA 5B F2 F9
B- B5 B6 FD B7 B8 B9 E6 BB BC BD 8D D9 BF 5D D8 C4
C- 7B 41 42 43 44 45 46 47 48 49 CB CA BE E8 EC ED
D- 7D 4A 4B 4C 4D 4E 4F 50 51 52 A1 AD F5 F4 A3 8F
E- 5C E7 53 54 55 56 57 58 59 5A A0 85 8E E9 E4 D1
F- 30 31 32 33 34 35 36 37 38 39 B3 F7 F0 FA A7 FF

TRAN source ASCII is a synonym for operation CVEA source.

EBCDIC
Indicates that SELCOPY's internal translate table for ASCII to EBCDIC conversion is to be used to translate characters in
the source value. The SELCOPY ASCII to EBCDIC translate table is as follows:

HEX -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0- 00 01 02 03 37 2D 2E 2F 16 05 25 0B 0C 0D 0E 0F
1- 10 11 12 13 3C 3D 32 26 18 19 3F 27 22 1D 35 1F
2- 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61
3- F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F
4- 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6
5- D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D
6- 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96
7- 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07
8- 9F 20 21 1C 23 EB 24 9B 71 28 38 49 90 BA EC DF
9- 45 29 2A 9D 72 2B 8A 9A 67 56 64 4A 53 68 59 46
A- EA DA 2C DE 8B 55 41 FE 58 51 52 48 69 DB 8E 8D
B- 73 74 75 FA 15 B0 B1 B3 B4 B5 6A B7 B8 B9 CC BC
C- AB 3E 3B 0A BF 8F 3A 14 A0 17 CB CA 1A 1B 9C 04
D- 34 EF 1E 06 08 09 77 70 BE BB AC 54 63 65 66 62
E- 30 42 47 57 EE 33 B6 E1 CD ED 36 44 CE CF 31 AA
F- FC 9E AE 8C DD DC 39 FB 80 AF FD 78 76 B2 43 FF

Chapter 4. SELCOPY Operations TRAN

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 243

TRAN source EBCDIC is a synonym for operation CVAE source.

LOWER
Indicates that SELCOPY's internal translate table for lower casing of alpha characters belonging to the ISO Basic Latin
alphabet is to be used to translate characters in the source value.

The interpretation of a character code point as upper case alpha (A to Z) and the hex value of its lower case equivalent (a
to z), is determined by the local code page (ASCII or EBCDIC) used by the system on which SELCOPY is running.

In all ASCII and EBCDIC code pages, the 26 upper case Latin alpha characters and their lower case equivalents are at
invariant code points. In ASCII code pages, these are [x'41'-x'5A'] for upper case alpha and [x'61'-x'7A'] for lower case
alpha. In EBCDIC code pages, these are [x'C1'-x'C9', x'D1'-x'D9', x'E2'-x'E9'] for upper case alpha and [x'81'-x'89',
x'91'-x'99', x'A2'-x'A9'] for lower case alpha.

TRAN source LOWER is a synonym for operation LOWER source.

UPPER
Indicates that SELCOPY's internal translate table for upper casing of alpha characters belonging to the ISO Basic Latin
alphabet is to be used to translate characters in the source value. See parameter LOWER for details of upper/lower case
alpha character interpretation and code point values.

TRAN source UPPER is a synonym for operation UPPER source.

PRINT
Indicates that SELCOPY's PRINT TYPE C translate table, used to convert each unprintable character in a print element
source value to "." (dot/period), is to be used to translate characters in the TRAN source value.

See TYPE C description of the PRINT operation for the table of characters determined as being printable for both ASCII
and EBCDIC systems. This TYPE C print table, and so the TRAN PRINT operation, is also influenced by values set by the
PRINTABLE and UNPRINTABLE environment options.

TO target
Identifies the declared variable or Type 1, 2 or 3 field definition that is the target of the operation.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of source is implied.

If the length of target is less than that of source, then the value assigned to target is truncated on the right. If its length is
greater than that of source, then the source length is used. In this case, text assigned to target that exists at locations
beyond the length of source, remains unchanged following the TRAN operation. (i.e. No padding occurs.)

Default is TO source.

HITS @variable | DCLvar
Applicable only when tabin tabout is used. HITS nominates an @variable or declared variable (DCLvar) of numeric data
type to be assigned a value equal to the number of characters in source that match a code point specified by tabin.

If no characters in source match a code point tabin, the value is 0 (zero).

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of TRAN for the same source and target values is unnecessary and so TIMES should never be used
on the TRAN operation.
See common parameter TIMES for details.

Examples:

 DECLARE SRCE CHAR(100) INIT='aa bbb cccc dd eeeeee'
 DECLARE STR1 CHAR INI 'abc'
 DECLARE STR2 CHAR INI 'xyz'

 TRAN SRCE 'ad' 'ad' HITS=@A * Will set @A to 4, changing every
 * 'a' to 'a' and 'd' to 'd',
 * effectively changing nothing,
 * but you get a count of the hits.

 TRAN SRCE STR1 STR2 HITS=@A * Will set @A to 9 and change the
 * contents of SRCE:
 * all 'a' chars to 'x'
 * all 'b' chars to 'y' and
 * all 'c' chars to 'z'

 MOD 8 AT 1 'hello' ASCII * Position 1: "hello " (ASCII)
 TRAN 8 AT 1 UPPER TO 261 * Position 261: "HELLO "
 TRAN 8 AT 261 EBCDIC TO 281 * Position 281: x'C8C5D3D3,D6404040'
 CVAE 8 AT 261 TO 281 * Same as above.

Chapter 4. SELCOPY Operations TRAN

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 244

UPDATE
Update a record or table row read from an input data object source.

Syntax:

 +- FILE -+
 | |
>>-- UPDATE ---+---+--------+-- fname ------------------------------------+-->
 | |
 +-- fileid --------+
 | |
 | |
 | +--- FILE ---- DEFAULTF --+ |
 | | | |
 +-+-------------------------+---+- DSN ---- fileid ------+-+
 | | | |
 | +- FILE -+ | +- TABLE -- table_name --+
 | | | |
 +-+--------+-- fname -----+

 +- FROM -- POS 1 -- LENGTH LRECL --+
 | |
 | +------------------------------+ |
 | v | |
 >---------------+-+------------------------------+-+------------------------>
 | |
 +---- | Update Element | ------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Update Element:

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Synonyms:

UPDATE UPD REP REPL REWRITE

Description:

Update of current input record is supported for z/OS data sets and library members, ODBC input tables, and for VSAM, z/VM CMS,
Micro Focus, Windows and Unix-like files.

For z/OS data sets and library members, Micro Focus files and VSAM data sets, input parameter UPD must have been specified
for the data object in order that it is opened for update. If not, ERROR 538 indicating failed update, or ERROR 26 indicating an
input/output conflict on the same file name, will be returned. UPD may be specified on the READ or OPEN operation.

UPDATE is not supported for input read via a CAT sub-operation.

File Update

For input file objects, the UPDATE operation will replace the contents of the last record read from the specified input object with
data starting at the FROM position.

Chapter 4. SELCOPY Operations UPDATE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 245

For VSAM KSDS file objects only, the length of the updated record may change and so the data that replaces the original input
record, has a length equal to the current value of variable LRECL. Beware that this value may be updated by another READ
operation. If the LRECL of the current record exceeds the defined maximum for the KSDS data set, the record is truncated at
the maximum length and return code 5 is set.

For all other file object and ODBC table object input, the length of the update data will always be the same as the length of the
input record being replaced, regardless of changes to the value of LRECL.

Update of records read using the READ DIRDATA parameter is supported. However, an attempt to update a directory record
will return ERROR 565.

ODBC Table Update

For ODBC database table update, the FOR UPDATE OF clause, nominating a list of updateable columns, must be specified on
the SQL query that opens the table cursor. This is achieved by specifying one of the following on the READ operation:

If parameter TABLE is used to identify a base table, specify the UPD update_columns parameter.•

If parameter SQL is used to specify an SQL query statement, the statement should include a FOR UPDATE OF
clause. e.g.

 DECLARE NEWPAY DEC(7,2)

 READ EMP SQL='SELECT EMPNO,WORKDEPT,SALARY \
 FROM DSN8910.EMP \
 FOR UPDATE OF SALARY'
 IF WORKDEPT = 'E11'
 THEN NEWPAY = SALARY
 THEN ADD 1000 TO NEWPAY * Give WORKDEPT 'E11' a pay rise.
 THEN CVPC NEWPAY TO SALARY FMT='99999.99' * Convert it back to character.
 THEN UPD EMP * Do the update.

•

As for input row values, the updated column values must be supplied in fixed length character data format and must also have
the same relative positions as the input values. SELCOPY builds the SQL UPDATE statement assignment clause using these
values and the updateable column names to which they belong.

UPDATE performs the positioned form of an SQL UPDATE statement on the current row and can only update columns
belonging to the first (or only) source table referenced by the SQL query FROM clause. The searched form of SQL UPDATE
may be actioned using the ODBC operation.

Parameters:

fileid
For file object update where no specific fname has been defined on the READ operation, fileid may be used to identify the
same file referenced on READ. fileid is a fileid clause specifying the name by which the input file is known to the local
system.

If fname is specified and is already associated with a fileid, then re-specification of fileid on the UPDATE operation is
unnecessary.

If not specified as the DSN parameter value, then specification of FILE is invalid and the associated fname is derived from
fileid as described by fileid for the READ operation.

fileid may be specified as an unquoted literal, a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If specified as a variable or field definition, fielid must be an argument to parameter DSN. Also, fileid specified on the
READ operation for the input file, must also be a variable or field definition (i.e. a dynamic value).

DSN fileid
Specifies the name of the input file. See fileid for details.

If no fname is specified on an UPDATE operation which uses DSN, then an fname of DEFAULTF is used by default.

FILE fname
F

Identifies the file name assigned to the input data object to be updated.

fname must match the specified (or derived) file name on the READ operation for the object being updated. It may only be
specified as an unquoted literal.

The fname value may be specified with or without the FILE parameter keyword.

Chapter 4. SELCOPY Operations UPDATE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 246

Update Element
Specifies an update element that constitutes a portion of the update record data.

Multiple update element specifications are concatenated with no intervening blanks and in the order in which they are
specified to construct the complete update record. The combined lengths of each of the elements define the update record
length. Note that, for ODBC table update, the updated column data must be at the same relative offsets as the input
columns.

If no update element is specified, the update record data defaults to a single field definition starting at position 1 with
length equal to the prevailing value of the variable LRECL. (i.e. FROM POS 1 LENGTH LRECL).

All update element values that are of numeric or character numeric data type are automatically converted to decimal
character display format before being written to the update data object (see the FORMAT parameter). Use &DCLVar to
output the unformatted value of a numeric DCLVar.

Each update element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type.

If specified as a type 1 field definition but without a length, the field will have a default length equal to the
prevailing value of variable LRECL. However, if parameter FORMAT is used to convert the field data to printable
hex, specification of a length is mandatory.

Although not necessary, keyword FROM may also be used before an update element specified as a
char_constant or a DCLVar of character data type.

char_constant
A quoted or hexadecimal character constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for data specified by the
update element.

The source data in an update element of numeric data type is automatically converted to displayable character
format (using a CVxC operation) before it gets written. The length of the update element is determined by
fmt_string, not the length of the update element source.

For update elements of character data type, fmt_string must be a printable hex format string for which a CVCH
(convert character to hex) operation will be performed.

For update elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the update element value is converted from its source numeric data type to the
decimal character display format described by the format string template.

For an update element specified as an @variable, IntVar or DCLVar of numeric or character numeric data type, a
default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the fmt_string specified on
the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for @variable, IntVar and DCLVar representing an integer value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

Chapter 4. SELCOPY Operations UPDATE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 247

TABLE table_name
TAB

For ODBC table object update where no specific fname has been defined on the READ operation, TABLE table_name
may be used to identify the same base table referenced by the READ TABLE parameter.

If fname is specified and is already associated with a table_name, then re-specification of table_name on the UPDATE
operation is unnecessary.

If no fname is specified on an UPDATE operation which uses TABLE, then an fname of DEFAULTF is used by default.

The table_name value may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If table_name is specified as a variable or field definition, then table_name specified on the READ operation for the same
input table, must also be a variable or field definition (i.e. a dynamic value).

TIMES int
Multiple execution of UPDATE for the same data is unnecessary and so should never be used. See common parameter
TIMES for details.

Examples:

Example 1.

Update a very large CMS file so that ':' in position 1 of a record becomes '-'.

 READ BIGFILE.DATA.D2

 IF POS 1 = ':'
 THEN POS 1 = '-' * Make the change.
 THEN UPDATE BIGFILE.DATA.D2 * Rewrite the record.
 THEN PRINT * Print all updated records.
 THEN WRITE CHANGES.DATA.A1 * Also write a "Changes" file.
 THEN LOG STOPAFT 4 * Log first 4 for interest.

Example 2.

Process a VSAM KSDS data set in a z/OS TSO environment, prompting the user for each record key to be flagged. The
selected record is read directly by key and the user prompted to confirm the change. If so, the record is updated in positions
27-39 with the character string "==FLAGGED==".

 OPTION WORKLEN 9000

 READ INKS STOPAFT 1 * Dummy read.
 LOG 'Enter key to update..' REPLY 6 AT 2000 * Prompt user for record key.

 IF POS 2000 = 'QUIT ' * Check for "QUIT".
 THEN GOTO EOJ * End the job.

 READ INKS KEY 6 AT 2000 * Read the requested record.
 IF POS 1 = '--- KEY/REC NOT FOUND ---' * If not found...
 THE LOG * Tell the user.
 THEN GOTO GET * Goto back to first prompt.

 LOG LENGTH 50 TYPE=C * Display the record data.
 LOG ' ' * Blank line.
 LOG 'Update above? Yes/No..' REPLY 3 AT 2010 * Verify update.
 UPPER 3 AT 2010 * Force Upper case.

 IF POS 2010 = 'YES' * If confirmed...
 THEN POS 27 = '==FLAGGED==' * Insert the eye-catcher.
 THEN UPDATE INKS * Update the input record.

Chapter 4. SELCOPY Operations UPDATE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 248

UPPER
Upper case alpha text in a character source value.

Syntax:

 +- FROM --+ +-- TO --- source ---+
 | | | |
>>--- UPPER -----+---------+-- source ----+--------------------+------------->
 | |
 +-- TO --- target ---+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Description:

All lower case alpha characters belonging to the ISO Basic Latin alphabet that occur within text represented by the source
character value, are upper cased and the value assigned to target. The target location may overlap storage at the source value
location. If target is not specified, then the source also becomes the target of the operation and its value is updated.

The interpretation of a character as alpha depends on the local code page used by the system on which SELCOPY executes. In all
ASCII and EBCDIC code pages, the 26 lower case Latin alpha characters (a to z) are at invariant code points. i.e. ASCII
[x'61'-x'7A'] and EBCDIC [x'81'-x'89', x'91'-x'99', x'A2'-x'A9']

Each occurrence of a lower case alpha character will translate to its equivalent upper case representation (A to Z). These
characters also exist at invariant code points. i.e. ASCII [x'41'-x'5A'] and EBCDIC [x'C1'-x'C9', x'D1'-x'D9', x'E2'-x'E9']

 MOD 50 AT 1 "The Quick Brown Fox Jumped over the lazy dog."
 UPPER 50 AT 1 TO 51
 PRINT FROM 50 AT 51 * Prints: "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG."

The UPPER operation is a synonym for the TRAN operation with parameter UPPER.

If upper casing is required for extended Latin characters or characters belonging to other alphabets, then the TRAN operation must
be used. The translate table referenced by the TRAN operation would need to identify each character's upper case code point at its
lower case code point location within the table.

Parameters:

FROM source
References the character text value in which alpha characters will be upper cased. source may be specified as a declared
variable of character data type, or a Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) character field
definition.

If TO target is specified, source may also be specified as a quoted or hex character constant.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of target is implied. Otherwise, a
length equal to the prevailing value assigned to variable LRECL is used.

TO target
Identifies the declared variable or Type 1, 2 or 3 field definition that is the target of the operation. If source is a constant
value, then TO target is mandatory.

If a field definition of type 1 (field_pLENn) is specified without a length, then the length of source is implied.

If the length of target is less than that of source, then the value assigned to target is truncated on the right. If its length is
greater than that of source, then the source length is used. In this case, text assigned to target that exists at locations
beyond the length of source, remains unchanged following the UPPER operation. (i.e. No padding occurs.)

Default is TO source.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of UPPER for the same source and target values is unnecessary and so TIMES should never be
used on the UPPER operation. See common parameter TIMES for details.

Chapter 4. SELCOPY Operations UPPER

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 249

UTIME
Set the access and modification timestamp for a z/VM CMS, Windows or POSIX file.

Syntax:

 (1)
 +-- UTIME -----+
 +--- FILE --+-- DEFAULTF --+ +- DSN --+
 | | | |
>>--- UTIME ----+--------------------------+---+--------+-- fileid ---------->
 | |
 | +- FILE --+ |
 | | | |
 +-+---------+-- fname -----+

 +- FTIME --+
 | |
 >---+----------+-- timestamp --->

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) The default value of fname is DEFAULTF if the keyword DSN is used, otherwise UTIME.

Description:

The UTIME operation is supported in z/VM CMS, Windows and POSIX environments only.

Each execution of UTIME will update the Access and Modification timestamp recorded for the specified fileid. If the timestamp
update fails (e.g. if the file identified by fileid does not exist), then return code 8 is set.

Parameters:

fileid
Identifies the Windows or Unix-like file to which the new timestamp will be set. fileid is a fileid clause specifying the name
by which the file is known to the local system.

If not specified as the DSN parameter value, then specification of FILE is invalid and an fname of UTIME is used by
default.

fileid may be specified as an unquoted literal, a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Notes on fileid specification:

If fileid is specified as a declared variable or field definition, then it must be an argument to parameter DSN.1.

In a z/VM CMS environment, where fileid may be interpreted as either a CMS mini disk file specification or a BFS
Unix-like file name, then SELCOPY will treat fileid first as a mini disk file and then, if not found, as a Unix-like file
name.

2.

A Windows or Unix-like fileid is not upper cased, even if specified as an unquoted literal.3.

DSN fileid
Specifies the name of the file. See fileid for details.

If no fname is specified on a UTIME operation which uses DSN, then an fname of DEFAULTF is used by default.

FILE fname
F

Identifies the name to be assigned to the file. See description of File Name for further details.

The value fname is a programmer defined name to be assigned to the file specified by the DSN parameter. fname can
only be specified as an unquoted literal.

The fname value may be specified with or without the FILE parameter keyword.

Chapter 4. SELCOPY Operations UTIME

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 250

FTIME timestamp
Specifies timestamp, an International Standard (ISO) date (ccyymmdd) and time (HH:MM:SS) to be assigned as the file's
timestamp value.

timestamp may be specified as an unquoted literal, a quoted character constant, a declared variable of character data
type or a Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

The timestamp ISO date must contain a 4-digit year but may omit a time value, in which case a default time of 00:00:00 is
applied. Any of the characters "." (dot/period), ":" (colon), "/" (slash) and/or "-" (minus/hyphen) may be specified within the
timestamp value. Delimiter characters "," (comma) and b (blank) may also be used to apply punctuation if timestamp is
specified as any of the supported formats other than an unquoted literal. e.g.

 UTIME DSN='SSUTIME2.tmp' FTIME='2000/12/29 00.33.22'
 UTIME SSUTIME2.tmp '2000-12-29 00:33:22' * Extra blanks.
 UTIME SSUTIME2.tmp '2000.12.29,00/33/22'
 UTIME SSUTIME2.tmp 2000/12/29...00:33:22 * Unquoted literal.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
Repeated execution of UTIME for the same timestamp and fileid is unnecessary and so TIMES should never be used on
UTIME. See common parameter TIMES for details.

Example:

The following example illustrates use of UTIME to set the timestamp of a number of files whose fileids, and new timestamps, are
supplied as card input.

 read card fill * Or some other file, possibly SELCOPY's DIR input.

 if pos 5 <> '/'
 then goto get * (Further selection or modification here perhaps.)
 * (e.g. Repairing GMT TZ problems.)

 if pos 31,80 <> ' ' reverse ptr=@e * Find end of filename. Must omit trailing blanks.
 then utime 31,@e 1,19 * Update the timestamp for this file.

 end
 * ..,....1....,....2....,....3....,....4..
 * Reqd Timestamp. On file.
 2000/12/29 00:33:22 g:\abc\xxxxx\some.file
 2001/02/09 01.20.38 g:\abc\xxxxx\some.other.file
 2001/02/09 01.31.51 g:\abc\xxxxx\file3

Figure 23. UTIME operation sample usage.

Chapter 4. SELCOPY Operations UTIME

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 251

WRITE
Output data to a data object from a location in storage.

Syntax:

 +- FROM -- POS 1 -- LENGTH LRECL --+
 | |
 +- WRITE --+ | +------------------------------+ |
 | | | v | |
>>--+----------+-- | Output Object | --+-+------------------------------+-+-->
 | |
 +---- | Output Element | ------+

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Output Object: (Dataset/File, Database Table or Focus Window)

 (1)
 |--+-- fileid ---------| Opt A |----+->
 | |
 | +--- FILE ----- DEFAULTF -+ |
 | | | |
 +-+-------------------------+--+- DSN --- fileid ---------| Opt A |-+--+
 | | | | | | | |
 | | +- FILE -+ | +- TABLE - table_name -----| Opt B |-+ |
 | | | | | | | |
 | +-+--------+--- fname ----+ +- WIN -+- window_title -+-| Opt C |-+ |
 | | | |
 | +- RESET --------+ |
 | +- FILE -+ |
 | | | |
 +---+--------+--- fname --------------------------------+-----------+--+
 | (2) | | |
 | +-| Opt A |-+ |
 | | | |
 | +-| Opt B |-+ |
 | | | |
 | +- FILE -+ +-| Opt C |-+ |
 | | | |
 +---+--------+-+- CLIP -----+--+
 | |
 +- DUMMY ----+
 | |
 +- LOG ------+
 +- PLOG -----+
 +- PRINT ----+
 | |
 +- START ----+
 | |
 +- STDOUT ---+
 | |
 +- STOP -----+
 +- EOJ ------+
 | |
 +- SUSP -----+

 >---+----------+--+--------+--+-----------------+---------------------------|
 | | | | | |
 +- DEFER --+ +- WTO --+ +- FILL -- char --+

Output Element: (Output Record/Keystroke Data)

 +-- FORMAT -- fmt_string --+
 | |
 |---+- FROM -- field_definition ----+---+--------------------------+--------|
 | |
 +--------- char_constant -------+
 | |
 +--------- DCLVar --------------+
 | |
 +--------- &DCLVar -------------+
 | |
 +--------- @variable -----------+
 | |
 +--------- IntVar --------------+

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 252

Opt A: (Dataset/File Object Options)

 |---+-- | z/OS & z/VM CMS OS Simulated QSAM | ----+---+-------------+----+--|
 | | | | |
 +-- | VSAM (z/OS, z/VM CMS & Micro Focus) | --+ +- DSNPFX ----+ |
 | | | |
 | +- NODSNPFX --+ |
 | |
 +-- | Windows & Unix-like Files | -----------------------------------+
 | |
 +-- | z/VM CMS Files | --+

Opt B: (Database Table Object Options)

 |---+--------------------------+-->
 | |
 +- FMT ----- column_list --+

 >---+------------------+--+-------------------+--+---------------------+----|
 | | | | | |
 +- SSN -- source --+ +- USER -- userid --+ +- ODBCPASS -- pass --+

Opt C: (Window Keystroke Options)

 +- KEYENC -- "[]" ---------+ +- KEYENCERR ON --+
 | | | |
 |---+------------------+--+--------------------------+--+-----------------+-|
 | | | | | |
 +- INTERVAL - int -+ +- KEYENC -+- "char char" -+ +- KEYENCERR OFF -+
 +- OFF ---------+

z/OS & z/VM CMS OS Simulated QSAM:

 |---+------------------+--+----------------+--+-------------------+--------->
 | | | | | |
 +- RECFM --+- F ---+ +- LRECL -- int -+ +- BLKSIZE -- int --+
 +- FB --+
 +- U ---+
 +- V ---+
 +- VB --+

 +- NOTRUNC --+
 | |
 >---+------------+--+-----------+--+-----------+----------------------------|
 | | | | | |
 +- TRUNC ----+ +- APPEND --+ +- NEWBLK --+

VSAM (z/OS, z/VM CMS & Micro Focus):

 +- RECFM ---- U ---+
 (3) | |
 |---+- VSAM --+--+----------+--+------------------+--+----------------+----->
 | | | | | | | |
 +- ESDS --+ +- REUSE --+ +- RECFM --+- F ---+ +- LRECL -- int -+
 | | | |
 +- KSDS --+ +- V ---+
 | |
 +- RRDS --+

 +- NOTRUNC --+
 | |
 >---+------------+--+------------------------------+------------------------|
 | | | |
 +- TRUNC ----+ +- KEYPOS int --- KEYLEN int --+
 (4)

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 253

Windows & Unix-like Files:

 +- RECFM ---- U ---+
 | |
 |---+------------------+--+---------------------+--+----------------+------->
 | | | | | |
 +- RECFM --+- F ---+ +- EOL --+- CRLF -----+ +- LRECL -- int -+
 +- FB --+ +- CR -------+
 +- V ---+ +- LF -------+
 +- VB --+ +- constant -+
 +- V2 --+ | |
 +- V3 --+ +- NO -------+
 +- MFV -+

 +- BDW ----+
 | |
 >---+-------------------+--+----------+------------------------------------->
 | | | |
 +- BLKSIZE -- int --+ +- NOBDW --+

 +- TRUNC ----+ (5)
 | |
 >---+------------+--+-----------+--+-----------+----------------------------|
 | | | | | |
 +- NOTRUNC --+ +- APPEND --+ +- NEWBLK --+

z/VM CMS Files:

 |---+------------------+--+----------------+--+-------------------+--------->
 | | | | | |
 +- RECFM --+- F ---+ +- LRECL -- int -+ +- BLKSIZE -- int --+
 | |
 +- U ---+
 +- V ---+

 +- TRUNC ----+
 | |
 >---+------------+--+-----------+---|
 | | | |
 +- NOTRUNC --+ +- APPEND --+

Syntax Notes:

(1) Optional parameters may be specified on any WRITE, OPEN or CLOSE operation for a data object referenced by
the same fname. If different option values relating to file geometry are specified for the same fname (e.g. RECFM,
LRECL, BLKSIZE, VSAM), then the last value specified will be used.

(2) WRITE to fname, without a reference to an input data object, is valid only if fname has already been associated
with a data object. i.e.

fname is an already allocated z/OS or z/VM CMS ddname.1.
Control statement analysis processing has already occurred for an OPEN, CLOSE or WRITE operation
that associates fname with a data object.

2.

(3) Specification of VSAM, KSDS, ESDS or RRDS is not necessary for z/OS VSAM data sets. For z/OS, the VSAM
data set type is established dynamically from the ICF catalog.

(4) KEYPOS and KEYLEN are used only on output to a new Micro Focus indexed (KSDS) file.
(5) TRUNC is default for Windows and Unix-like file output unless RECFM=U EOL=NO is specified or output is to a

z/OS HFS/ZFS file, in which case NOTRUNC is the default.

Synonyms:

WRITE WR PUT (For ODBC output only: INSERT INS ISRT)

Description:

Each execution of a WRITE operation will write a single line of data to the output data object. The length of this data is determined
by the type of output object, the lengths of the output elements that comprise the output data and the output parameter options
specified on WRITE.

For z/OS and z/VM CMS file output (including output to VSAM data sets), each line of data is a record as defined by the data set or
file organisation. For Windows and Unix-like files (including CLIP and STDOUT input), a record is usually a line of data terminated
by end-of-line characters, though fixed and other variable length formats are also supported. The row of data written to an ODBC
table is of fixed length, determined by the column widths selected.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 254

A line of data written to a window object is not a record, but is instead interpreted by SELCOPY as individual keystrokes that get
actioned at the focus window, as though typed at the local keyboard. (Note that the focus window is identified by the WIN
window_title parameter.)

With the exception of ODBC tables, VSAM and Micro Focus files, where output records are added to existing object data, records
written using the WRITE operation will replace all existing records in the output data object. This is also true if parameter REUSE
has been specified on output to a reusable VSAM data set. Where applicable, parameter APPEND may be used to preserve
existing records and so write records following the last record of the data set.

Unless the output file object is unblocked, file output (including STDOUT) involves copying the records to an output buffer which is
allocated to the output file object fname when it is opened. When an output record is copied that exceeds the length remaining in
the output buffer, the contents of the buffer are physically written to the file object, the buffer is re-initialised and the output record
inserted at the start of the buffer. Each execution of the WRITE operation to an unblocked file performs a physical write to the file
with no buffering.

For files that are managed by QSAM, VSAM or CMS file I/O, buffering is handled by the access method itself. For Windows and
Unix-like files, buffering is controlled by SELCOPY.

Parameters specified on WRITE apply either to the object open, data output or the execution of the individual SELCOPY operation.

Object Open Parameters

By default, an output data object on WRITE is opened at the end of SELCOPY's control statement analysis. Parameters
affecting object open are applied once when the object is opened.

Open parameters, specified on WRITE operations for the same fname that occur in subsequent control statements, may update
or expand on the values set by parameters in the first WRITE operation. Open parameters are as follow:

fileid
DEFER
DSN

DSNPFX
ESDS
FMT

KSDS
REUSE
RRDS

TABLE
VSAM
WIN

Open of a data object assigned to fname may be deferred until selection time processing. Furthermore, the object may be
closed and re-opened if required. In these cases, SELCOPY uses the prevailing values of open parameters specified on all
WRITE or OPEN operations for fname.

Deferred open may be achieved using any of the following methods:

Specify DEFER on any WRITE operation for fname.•
Include an OPEN operation for fname.•
Specify a dynamic value (i.e. a declared variable name or field definition) for the output data object specification
parameters: DSN fileid, FMT column_list and TABLE table_name.

•

Data Output Parameters

Data output is performed when the WRITE operation is executed during selection time processing and may involve additional
processing by SELCOPY. e.g. The automatic addition of variable record format RDWs or, for Windows and Unix-like files,
end-of-line characters.

Data output parameter values are established during control statement analysis. Therefore, parameter values specified on
WRITE operations for the same fname that occur on subsequent control statements, may update or expand on values set by
previous WRITE operations. The prevailing parameter values are used for all data output performed for fname. Data output
parameters are as follow:

APPEND
BDW / NOBDW
BLKSIZE
EOL

FILL
KEYLEN
KEYPOS
LRECL

ODBCPASS
RDW / NORDW
RECFM
SSN

TRUNC / NOTRUNC
USER

Operation Specific Parameters

Operation specific parameters apply only to the individual WRITE operation. If specified on other WRITE operations for the
same fname, these parameter values do not affect the execution of the current WRITE operation. Operation specific parameters
are as follow:

FROM
INTERVAL

KEYENC
KEYENCERR

NEWBLK
STOPAFT

TIMES
WTO

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 255

Parameters:

fileid
Identifies the WRITE operation as being for file output. fileid is a fileid clause specifying the name by which the output file
is known to the local system.

If fileid is the name of a z/OS sequential data set or the name of a PDS library and member, then the sequential or library
data set must already be cataloged. In all other instances, SELCOPY will create a file named fileid if it does not already
exist.

If fileid is not specified as the DSN parameter value, then specification of FILE is invalid and the associated fname used by
SELCOPY to reference fileid is derived from fileid itself. The derived fname is determined as follows:

For z/OS, if fileid is the name of a sequential data set or a PDS/PDSE library and member, fname is set to be the
first qualifier of the data set name.

◊

For z/VM, if fileid is the name of a CMS file (fn ft fm) , fname is set to be the file name qualifier (fn).◊

For Windows and Unix-like files, the derived fname depends on the length of the portion of fileid that follows the
last "." (dot/period), if any. In Windows, this is the fileid extension.

If this length is 3 characters or less, fname is the up-to-8 character file name string that follows the path
specification (if any) up to, but not including, "." (dot/period) prefixed fileid extension.

1.

Otherwise, fname is the character string which occupies up-to-8 characters of fileid, not including the
path specification (if any).

2.

◊

On z/OS systems, if fileid is the name of a sequential data set or PDS/PDSE library and member, then the derived fname
is also the ddname that SELCOPY dynamically allocates to fileid. (see FILE parameter).

fileid may be specified as an unquoted literal, a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Notes on fileid specification:

If fileid is specified as a declared variable or field definition, then it must be an argument to parameter DSN. Also,
open of the output file is deferred until the WRITE (or OPEN) operation is executed during selection time
processing.

1.

In z/OS, where fileid may be interpreted as being either a z/OS data set name or an HFS/ZFS Unix-like file name,
then SELCOPY will treat fileid first as a data set name and then, if not found, as a Unix-like file name.

Similarly in a z/VM CMS environment, where fileid may be interpreted as either a CMS mini disk file specification
or a BFS Unix-like file name.

2.

On a z/OS system, if environment option DSNPFX is in effect, then the TSO prefix (TSO/E) or ACF userid (batch)
will be prefixed to fileid if the constant, variable or field definition value used is unquoted. Furthermore, if option
DSNPFX is in effect and neither DSNPFX nor NODSNPFX is specified on the WRITE operation, open of a data
set without a DSN prefix will be attempted if the initial attempt to open a data set with a DSN prefix fails.

Only if this second attempt to open a data set also fails, will fileid be treated as a Unix-like HFS/ZFS file name as
described in note 2. above.

3.

A Windows or Unix-like fileid is not upper cased, even if specified as an unquoted literal.4.

Output Element
Specifies an output element that constitutes a portion of the output record data.

Multiple output element specifications are concatenated with no intervening blanks and in the order in which they are
specified to construct the complete output record. The combined lengths of each of the elements define the output record
length.

If no output element is specified, the output record data defaults to a single field definition starting at position 1 with length
equal to the prevailing value of the variable LRECL. (i.e. FROM POS 1 LENGTH LRECL).

All output element values that are of numeric or character numeric data type are automatically converted to decimal
character display format before being written to the output data object (see the FORMAT parameter). Use &DCLVar to
output the unformatted value of a numeric DCLVar.

Each output element may be specified in one of the following formats:

FROM field_definition
A Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition of any data type.

If specified as a type 1 field definition but without a length, the field will have a default length equal to the
prevailing value of variable LRECL. However, if parameter FORMAT is used to convert the field data to printable
hex, specification of a length is mandatory.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 256

Although not necessary, keyword FROM may also be used before an output element specified as a
char_constant or a DCLVar of character data type.

char_constant
A quoted or hexadecimal character constant.

DCLVar
The name of a previously defined declared variable of any data type.

&DCLVar
The & (ampersand) prefixed name of a previously defined declared variable of any data type. Returns the
unformatted value of the variable as found in the variable's source field.

@variable
The name of an @variable that has a non-null value.
If @variable is null, return code 8 is set and the element value of "*?*" is used.

IntVar
The name of a SELCOPY internal variable.

FORMAT fmt_string
FMAT
FMT

FORMAT specifies fmt_string, a format string used as the character display template for data specified by the
output element.

The source data in an output element of numeric data type is automatically converted to displayable character
format (using a CVxC operation) before it gets written. The length of the output element is determined by
fmt_string, not the length of the output element source.

For output elements of character data type, fmt_string must be a printable hex format string for which a CVCH
(convert character to hex) operation will be performed.

For output elements of numeric or character numeric data type, fmt_string may be a printable hex or numeric
format string. If numeric format, the output element value is converted from its source numeric data type to the
decimal character display format described by the format string template.

For an output element specified as an @variable, IntVar or DCLVar of numeric or character numeric data type, a
default fmt_string is used if no FORMAT parameter is specified. For DCLVar, this is the fmt_string specified on
the DECLARE operation. Otherwise, the default fmt_string is one of the following:

fmt_string Default Usage
'SS,SSS,SSS,SS9' Used for @variable, IntVar and DCLVar representing an integer value.
'SS,SSS,SSS,SS9.9999' Used for DCLVar representing a rational value.

Important note:

The location and length of the output record data, as specified by the output element may be modified by SELCOPY if
the following are all true:

The prime input is a file object of variable record format (RECFM V, VB, V2, V3 or MFV) and environment (or
READ parameter) option RDW is in effect. i.e. The 2, 3 or 4 byte record descriptor word is included as part of
the input record data.

1.

Only one output element is specified (or implied).2.

The output element is a field definition or declared variable of character data type.3.

If all the above are true, then, to account for the presence of the RDW in the input record, SELCOPY increments the
address of the output record by the length of the RDW field and reduces the output record length by the same amount.
e.g.

 READ INPV DSN='NBJ.RECFMVB' RDW * LRECL = data length + 4 (RDW length).
 PRINT * Print record data including RDW.
 WRITE OUTF * Write (FROM 1+4 LENGTH=LRECL-4)

APPEND
APP

Supported only for output to z/OS and z/VM CMS OS simulated QSAM sequential data sets, CMS files and Windows and
Unix-like files. APPEND indicates that records written by all WRITE operations for fname are to be appended to records
that already exist in the output file object.

To support APPEND, a z/OS sequential data set must first be allocated with DISP=MOD. If APPEND is specified and
SELCOPY dynamically allocates fname to the output data set, fileid, then DISP=MOD will be used instead of DISP=SHR.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 257

BDW | NOBDW
Specifies whether or not the Windows or Unix-like output file of variable length record format (RECFM V or VB) is blocked.

If BDW is specified, then, when a block of records are written to the file object from the output data buffer, SELCOPY will
generate a 4-byte block descriptor word (BDW) at the beginning of the block. The BDW is in the same format used by
z/OS RECFM VB data sets and contains the size of the block as a number of bytes.

Default is BDW, output to a variable length record format file is blocked (RECFM VB).

BLKSIZE int
BLK
B

Specifies the size of the output data buffer defined for fname.

BLKSIZE should never be specified for output to a z/OS, CMS OS Simulated QSAM or IBM VSAM data set. For these
types of file, the output file buffer size is always determined by standard access method processing.

BLKSIZE is tolerated and ignored if specified on the WRITE operation for WIN keystroke and ODBC database table
output.

For Windows and Unix-like files, including Windows clipboard (CLIP) and Micro Focus VSAM output, BLKSIZE overrides
the default buffer size and, if LRECL is not specified, also imposes a maximum record length for the output record data.
(see LRECL default). The size of the buffer determines the maximum size of a block of records written to a Windows or
Unix-like RECFM VB file. The output buffer size is determined as follows:

The value specified on parameter BLKSIZE.1.

For fixed length record format (RECFM F) only, buffer size is the value specified on parameter LRECL, if greater
than 2048.

2.

For variable length record format (RECFM V or VB) only, buffer size is the same as that assigned to the prime
input (default 2048). i.e. If BLKSIZE is specified on the prime input READ operation, the same BLKSIZE value
will be used for the RECFM V or VB output.

3.

2048 bytes.4.

For all output record formats, if the maximum record length imposed by the BLKSIZE value is less than the value specified
for LRECL, then ERROR 571 (Bufsize < LRECL+delims) is returned.

DEFER
Defer open of the data object until data is written during selection time processing.

DEFER allows the same data object to be opened for input, its data read and processed and then closed again before it is
re-opened for output, all within the same SELCOPY job.

Note that DEFER is implied when an OPEN operation for the same fname exists within the control statements and/or fileid
or table_name is dynamic (i.e. a declared variable name or field definition).

By default an output file is opened at the end of control statement analysis processing.

DSN fileid
Specifies the name of the output file. See fileid for details.

If no fname is specified on a WRITE operation which uses DSN, then an fname of DEFAULTF is used by default.

DSNPFX | NODSNPFX
USERID | NOUSERID
UID | NOUID
DSNPFX YES | DSNPFX NO

Applicable only in z/OS where fileid identifies an unquoted data set name belonging to a PDS/PDSE library or a sequential
or VSAM data set.

If fileid is an unquoted literal or an unquoted value identified by a declared variable or field definition, then DSNPFX will
prefix the value with the one of the following:

The ACF userid assigned to the job if running in batch.◊
The current TSO prefix if running in a TSO/E environment.◊

If specified on the WRITE operation, DSNPFX, NODSNPFX or one of their synonyms will override the current value of the
DSNPFX environment option for that output file only. If not specified on WRITE operation and DSNPFX (YES) is the
environment default, SELCOPY will first attempt to open the file using a data set name prefix. If that fails, SELCOPY will
attempt to open the file without a data set name prefix.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 258

EOL CRLF | CR | LF | NO | constant
Applicable only to RECFM U output of Windows and Unix-like files, EOL defines the end-of-line characters that SELCOPY
will append to each output record when it is copied to the output buffer.

The representation of each EOL argument is as follows:

EOL ASCII EBCDIC Description
CRLF X'0D0A' X'0D15' Default for Windows, z/OS HFS/ZFS and z/VM BFS.
LF X'0A' X'15' Default for Linux and Unix file systems.
CR X'0D' X'0D'
constant A quoted or hex character constant of any length.
NO No end-of-line characters are used.

By default, SELCOPY will use end-of-line characters CRLF for Windows file output and LF for Unix-like file output.

EOL constant specifies a non-standard combination of characters to be used to delimit each output record. EOL NO
indicates that records have no end-of-line characters and also implies parameter NOTRUNC.

ESDS
Applicable to IBM VSAM data sets (z/OS and z/VM CMS) and Micro Focus VSAM files. ESDS identifies the output file as
a VSAM ESDS (entry sequenced data set) or a Micro Focus variable length record sequential file.

For existing z/OS VSAM data sets, parameter ESDS does not need to be specified as SELCOPY automatically identifies
the access method and file organisation of the input file.

A new Micro Focus variable length record sequential file may be created using parameter ESDS. For all existing Micro
Focus indexed, relative and record sequential files, parameters VSAM, KSDS, ESDS and RRDS are synonymous and
indicate only that output is to be performed via the Micro Focus file handler.

FILE fname | CLIP | DUMMY | STDOUT
F

Identifies the name to be assigned to the output object or data stream. This name may be used to reference the output
data object within other SELCOPY control statements. See description of File Name for further details.

The value fname is a programmer defined name to be assigned to the file, ODBC database table or window keystroke
output specified by the DSN, TABLE or WIN parameter. fname can only be specified as an unquoted literal. Furthermore,
if the operation keyword WRITE or any of its synonyms is omitted, fname must not match any of the following identifiers:

A keyword that identifies a SELCOPY operation.◊
An @variable, declared variable or an internal variable.◊
A label name as referenced by a DO or GOTO operation.◊
A substitution variable that is substituted by any invalid identifier.◊

For z/OS sequential data set or PDS/PDSE library member input, fname is the ddname that SELCOPY dynamically
allocates to fileid. This is required since z/OS access methods use an allocated ddname to perform an open and
subsequent I/O on the data set. By default the data set is allocated to fname with DISP=SHR. However, DISP=MOD is
used if parameter APPEND is specified.

Special instances of fname exist to identify specific output data objects as follow:

CLIP For Microsoft Windows only, output is to the Windows clipboard.
DUMMY Output is to a dummy object source. WRITE DUMMY is equivalent to executing the DUMMY

operation.
LOG Output is to the standard error stream (stderr). WRITE LOG is equivalent to executing the LOG

operation.

In native z/OS and z/VM CMS environments, output to LOG will write to SYSOUT.
PLOG Output is to the SELCOPY list output and the standard error stream (stderr). WRITE PLOG is

equivalent to executing the PLOG operation.
PRINT Output is to the SELCOPY list output. WRITE PRINT is equivalent to executing the PRINT

operation.
START No data is written. WRITE START is equivalent to executing the START operation.
STDOUT Output is to the standard output stream (stdout). It is primarily used in Windows and POSIX

environments to write data which is to be piped as input to another application.

In native z/OS and z/VM CMS environments, output to STDOUT will write to fileid STDOUT.
STOP or EOJ No data is written. WRITE STOP and WRITE EOJ is equivalent to executing the GOTO EOJ

operation.
SUSP No data is written. WRITE SUSP is equivalent to executing the SUSP operation.

The fname value (or any of the special instances) may be specified with or without the FILE parameter keyword.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 259

FILL char
PAD

On output to fixed length record format files (e.g. VSAM RRDS and RECFM F data sets), FILL specifies char, a single
character represented by a character constant that will be used to pad an output record to the fixed record length defined
for the output file object.

Padding occurs when the length of the output data specified by the output elements, is less than the output record length.
For fixed length format output, the default pad character, char, is that specified by the FILL option in the SELCNAM file,
otherwise blank.

For variable length output, FILL may be specified in conjunction with TRUNC to identify the truncation character, char
(default blank).

FMT column_list
Applicable to ODBC table output, FMT specifies column_list, a number of comma separated column names belonging to
the table or view specified by the TABLE parameter.

These column names identify the columns into which specific values will be inserted when the row is written to the base
table(s). Columns belonging to the table or view that are not identified by column_list will be assigned a default value. An
SQL error will occur if one or more of these columns do not support a default value.

The column_list value may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if column_list is specified as a declared variable or field definition, then the object open, connection to the
database and execution of the SQL INSERT is deferred until the WRITE operation is executed during selection time
processing.

INTERVAL int
INTVL
DELAY

Applicable only to Window keystroke output in a Microsoft Windows environment, INTERVAL specifies int, an integer
value representing the number of milliseconds (0.001 second) that must elapse before the next keystroke (or keystroke
combination) is performed. i.e. the interval of time between each keystroke actioned by the output keystroke sequence
specified on the current WRITE operation.

The interval value, int, may only be specified as a decimal integer constant.

The INTERVAL coded will take effect when the WRITE operation starts and will remain in effect for all subsequent WRITE
operations to that window, unless changed by a different WRITE operation or by an occurrence of [INTERVAL=int] within
the keystroke sequence.

Default is 10 milliseconds.

KEYENC "char char" | NOKEYENC
KEYENC OFF
KEYENC NO

Applicable only to Window keystroke output in a Microsoft Windows environment, KEYENC identifies the pair of enclosing
characters required to identify the start and end of all keystroke parameters other than key_char. Alternatively,
NOKEYENC (KEYENC OFF or KEYENC=NO) will disable use of all keystroke parameters other than key_char.

KEYENC and NOKEYENC will only affect the current WRITE operation and so are used to temporarily override the default
set by the KEYENC environment option (default KEYENC "[]")

The KEYENC character pair "char char" is specified as a quoted character constant and must be one of the following:

[] Square brackets {} Braces
() Parentheses <> Chevrons

Any other character combination will give ERROR 167.

In the following example, "Editor" identifies the name in the Title Bar of the window to be addressed. The identification of
the title is case insensitive and will still succeed if the name supplied is shorter than the actual title. The first window
encountered with a title matching the title coded will be accepted and addressed.

 WRITE WIN="Editor" FROM "<CR>edit x.x<CR><CR>top<CR>add 22<CR><DOWN><x=5>" KEYENC = "<>"

The following demonstrates syntax executed as parameters on the SELCOPY command using the default KEYENC
characters.

 selcopy !write win=ked from "[cr]e x.x[cr]" !end * Default [] used.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 260

KEYENCERR | NOKEYENCERR
KEYENCERR ON | KEYENCERR OFF
KEYENCERR YES | KEYENCERR NO

Applicable only to Window keystroke output in a Microsoft Windows environment.

By default, SELCOPY will treat values enclosed within KEYENC characters that do not represent a valid key_special or
key_combo specification, as a sequence of key_char characters. In this case, the enclosing characters are treated as
key_char characters.

KEYENCERR (KEYENCERR ON or KEYENCERR YES) indicates that return code 8 will be set for each one of these
invalid specifications within the output keystroke sequence. Therefore, the number of instances is reflected in the return
code count displayed against the WRITE operation in the SELCOPY list output selection summary. e.g.

 WRITE WINP WIN="prim" '[CR]' * Write to the "CMD.EXE - Primary" window.
 WRITE WINP 'rem - Bad special keys: [123][XYZ] get used as data and RC=8 set.[CR]'

In the above example, the keystroke data written is as follows (hash "#" represents the ENTER key):

 #rem - Bad special keys: [123][XYZ] get used as data and RC=8 set.#

NOKEYENCERR (KEYENCERR OFF or KEYENCERR NO) will suppress the return code 8 that would be set by this
condition.

KEYENCERR and NOKEYENCERR will only affect the current WRITE operation and so are used to temporarily override
the default set by the KEYENCERR environment option (default KEYENCERR ON).

KEYLEN int
KL

Applicable only on output to a new Micro Focus indexed file, KEYLEN specifies an integer constant value, int, which is the
length of the key field within the record data.

See KSDS for Micro Focus indexed file output.

KEYPOS int
KP

Applicable only on output to a new Micro Focus indexed file, KEYPOS specifies an integer constant value, int, which is the
position of the key field within the record data.

See KSDS for Micro Focus indexed file output.

KSDS
Applicable to IBM VSAM data sets (z/OS and z/VM CMS) and Micro Focus VSAM files. KSDS identifies the output file as
a VSAM KSDS (key sequenced data set) or a Micro Focus variable length indexed file (IDXFORMAT 3, 4 or 8).

For existing z/OS VSAM data sets, parameter KSDS does not need to be specified as SELCOPY automatically identifies
the access method and file organisation of the input file.

A new Micro Focus variable length indexed file may be created using parameter KSDS. To do this parameters KEYPOS
and KEYLEN must also be specified to identify the position and length of the primary key within the output records. The
specific format of the new file indexed file is determined by the IDXFORMAT specification in the Micro Focus file handler
configuration file. This file has a fileid as assigned to environment variable EXTFH, otherwise it defaults to "extfh.cfg" .

For all existing Micro Focus indexed, relative and record sequential files, parameters VSAM, KSDS, ESDS and RRDS are
synonymous and indicate only that output is to be performed via the Micro Focus file handler.

LRECL int
RECSIZE
L

Specifies the maximum output record length for fname. If specified on a WRITE operation without also specifying RECFM,
LRECL implies fixed length record format (RECFM F) output.

LRECL should not be specified for output to an existing z/OS data set, z/VM CMS file or an IBM VSAM data set. For these
types of file input, the maximum output record length is always determined by standard access method processing. If
LRECL is specified that does not match the allocated LRECL value, then a file geometry conflict error will be returned.

LRECL is tolerated and ignored if specified on the WRITE operation for an ODBC table or an existing Micro Focus file.
However, LRECL is mandatory on output to a new Micro Focus relative (RRDS) file in order to define the fixed length
value.

For output to a new z/VM CMS file or output to Windows and Unix-like files, including Windows clipboard (CLIP), LRECL
overrides the maximum record length imposed by the explicit or implied BLKSIZE value. The maximum output record
length is determined as follows:

The value specified on parameter LRECL.1.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 261

For undefined length record format (RECFM U), the maximum record data length is equal to the size of the
output buffer (BLKSIZE) minus the length of the EOL character(s). If EOL is not specified for fname, the default
EOL character length is 2.

2.

For all other record formats (RECFM F, V, VB, V2, V3 and MFV), the maximum record data length is the size of
the output buffer (BLKSIZE).

3.

For fixed length record format (RECFM F) output, the maximum record length is the actual length of each output record.

For variable (RECFM V) and undefined (RECFM U) record format, an output record exceeding the maximum length will be
truncated.

NEWBLK
Indicates that the a record written by this WRITE operation will occupy the first position of the output data buffer (i.e.
output block).

By default, SELCOPY does not physically write the block of records stored in the output buffer to the output device until
the buffer is full. i.e. when a WRITE operation is executed where the output record length exceeds the length remaining in
the buffer. Following the physical write, the buffer is reset to empty so that the next output record for fname is written to
the start of the buffer.

NEWBLK overrides this processing so that, if records exist in the output buffer, then the physical write occurs before the
buffer is filled and before the new output record is written to the buffer. For RECFM VB output, a short block is written with
the length of the block reflected in the generated block descriptor word (BDW).

NEWBLK is particularly useful when output is to a Windows, Unix or Linux tape device, or a z/OS or z/VM CMS ddname
that has been assigned to a tape unit.

A tape device driver will automatically insert an inter-record gap (IRG) following each block of data physically written to the
tape device. Therefore, NEWBLK may be used to control the size of the data block and the occurrence of an IRG.

The following Linux system example demonstrates output to a non-rewinding tape device and execution of the mt shell
command from a SELCOPY program. Note that a non-rewinding tape device driver will not rewind the tape when the
output is closed. In the example, a short block is written if the next output record needs to be the first record of a block.

 READ INX DSN="/home/nbj/testfile"

 IF 4 AT 1 TYPE=B = -1 * x'FFFF,FFFF' => Tape Mark required.
 THEN SYSTEM "mt -f /dev/nst0 eof 1"
 THEN GOTO GET

 IF 4 AT 1 TYPE=B = 1 * Record sequence within a block.
 THEN WRITE OTAPE DSN="/dev/nst0" NEWBLK BLKSIZE=65536
 ELSE WRITE OTAPE

Also see the FLUSH operation which performs the same function as NEWBLK except that no record is written to the buffer
following the physical write.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

ODBCPASS pass
OPASS
PASSWORD
PASSWD
PASS

Applicable to ODBC table output, ODBCPASS specifies the password (pass) to be used, together with the associated
user name (see USER parameter), when connecting to the data source via ODBC. Note that a user name and password
is mandatory for connection to any data source.

pass must be specified as a character constant and its specification will override the prevailing value set by the
ODBCPASS environment option.

RECFM F | FB | U | V | VB | V2 | V3 | MFV
Specifies the output record format for fname as follows:

F Fixed length records.
FB Fixed length blocked records.
U Undefined length records.
V Variable length records.
VB Variable length blocked records.
V2 Variable length records with 2-byte length fields.
V3 Variable length File Transfer Protocol (FTP) Block Mode records.
MFV Variable length Micro Focus record sequential records.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 262

RECFM should not be specified for output to an existing z/OS data set, z/VM CMS file or an IBM VSAM data set. For
these types of file input, the record format is always determined by standard access method processing (e.g. VSAM data
sets are always RECFM U). If RECFM is specified that does not match the allocated RECFM value, then a file geometry
conflict error will be returned.

RECFM is tolerated and ignored if specified on the WRITE operation for ODBC table or Micro Focus output. ODBC tables
are always RECFM F and files processed using the Micro Focus file handler are always RECFM U.

For output to a new z/VM CMS file or output to Windows and Unix-like files, including Windows clipboard (CLIP), RECFM
specifies the format of the output data.

z/VM CMS files of variable record format (RECFM V) do not contain records that include an RDW prefix. For these files,
RECFM V indicates only that records need not be of the same length. Therefore, RECFM V and RECFM U are treated as
being equivalent on a WRITE operation to a new z/VM CMS output file. Specification of RECFM FB and RECFM VB
(blocked output) on the WRITE operation indicates the z/VM CMS OS simulated QSAM is to be used.

For variable record format to Windows and Unix-like files, SELCOPY generates an RDW in the format appropriate to the
particular RECFM specification, and adds it as a prefix to the record data written to the output buffer. Furthermore, for
RECFM MFV, SELCOPY generates a 128-byte header as the first output record. For undefined (RECFM U) record
format, SELCOPY adds end-of-line character(s) to the end of each record, as defined by the EOL parameter, before
writing it to the output buffer. Fixed (RECFM F) and fixed blocked (RECFM FB) record format are equivalent since output
is always buffered. SELCOPY writes fixed record format data to the output buffer without the need for additional
processing.

If output is to a new z/VM CMS file or to a Windows or Unix-like file, the default RECFM value is the same as that of the
prime input file. However, if LRECL is specified, then RECFM F is implied.

See Data Record Format for details of the different RECFM types.

RRDS
Applicable to IBM VSAM data sets (z/OS and z/VM CMS) and Micro Focus VSAM files. RRDS identifies the output file as
a VSAM RRDS (relative record data set) or a Micro Focus variable length record sequential file.

For existing z/OS VSAM data sets, parameter RRDS does not need to be specified as SELCOPY automatically identifies
the access method and file organisation of the input file.

A new Micro Focus record sequential file may be created using parameter RRDS. Although the new file will be defined as
being variable length, the output records must all be of fixed length to match those of a real VSAM RRDS data set.
Therefore, parameter LRECL must also be specified to define the (maximum) record length for the file. All output records
will be padded or truncated to this length.

For all existing Micro Focus indexed, relative and record sequential files, parameters VSAM, KSDS, ESDS and RRDS are
synonymous and indicate only that output is to be performed via the Micro Focus file handler.

SSN source
Applicable to ODBC table output, SSN specifies the ODBC data source name (source) to which the ODBC connection will
be made. Note that specification of an ODBC source name that has been defined to the local system, is mandatory for
ODBC table input.

source must be specified as a character constant and its specification will override the prevailing value set by the SSN
environment option.

STOPAFT int
See common parameter STOPAFT for details.

TABLE table_name
TAB

Identifies the WRITE operation as being for ODBC table output.

For ODBC database output, TABLE specifies the name of the table or view (table_name) to which rows will be inserted.
SELCOPY will construct an SQL INSERT statement using the value specified on TABLE optional parameter FMT.

If no fname is specified for TABLE output, then an fname of DEFAULTF is used by default.

The table_name value may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

Note that, if table_name is specified as a declared variable or field definition, then the object open, connection to the
database and execution of the SQL INSERT is deferred until the WRITE operation is executed during selection time
processing. Therefore, the declared variable names, generated for each output column when the table is opened, may
only be referenced in SELCOPY control statements if table_name is a quoted character string.

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 263

TIMES int
See common parameter TIMES for details.

TRUNC | NOTRUNC
TRUNC and NOTRUNC controls whether or not trailing truncation characters (the char identified by parameter FILL but
defaulting to blank) which exists in the output record data for the current WRITE operation, are truncated when written to a
file object that supports records of different lengths.

If output is to a file object containing fixed length records or more than one output element is specified on the WRITE
operation, then parameter TRUNC is ignored. Trailing truncation characters will be preserved in all of the output element
specifications.

The default is TRUNC (truncate trailing characters) unless output is to any of the following, in which case the default is
NOTRUNC:

z/OS data sets and library members of RECFM V, VB or U.◊
◊ z/OS HFS/ZFS (Unix-like) files.◊
◊ VSAM KSDS and ESDS data sets.◊
Micro Focus indexed and record sequential files.◊
Windows & Unix-like files where EOL=NO has been specified.◊

USER userid
Applicable to ODBC table output, USER specifies the user name (userid) to be used, together with the associated
password (see ODBCPASS parameter), when connecting to the data source via ODBC. Note that a user name and
password is mandatory for connection to any data source.

userid must be specified as a character constant and its specification will override the prevailing value set by the USER
environment option.

VSAM
Applicable to IBM VSAM data sets (z/OS and z/VM CMS) and Micro Focus VSAM files. VSAM identifies the output file as
one of the supported VSAM data set types (KSDS, ESDS or RRDS) or as one of the supported Micro Focus file types
(indexed, record sequential or relative).

For existing z/OS VSAM data sets, parameter VSAM does not need to be specified as SELCOPY automatically identifies
the access method and file organisation of the input file.

A new Micro Focus file may be created using parameter VSAM. If parameters KEYPOS and KEYLEN are specified on any
WRITE operation for fname, a variable length indexed file will be created. Otherwise, a variable length record sequential
file is created by default.

For all existing Micro Focus indexed, relative and record sequential files, parameters VSAM, KSDS, ESDS and RRDS are
synonymous and indicate only that output is to be performed via the Micro Focus file handler.

WIN window_title | RESET
Identifies the WRITE operation as being for Microsoft Windows Keystroke output.

For keystroke output, WIN specifies window_title, the title of the target window (as displayed in the window's title bar) on
which focus will be placed before actioning the keystroke sequence. Alternatively, RESET returns focus to the window on
which focus was placed before execution of the SELCOPY program.

The window_title is case insensitive and may be a substring of a window's title. If the target window of the WRITE
operation is the window from which the SELCOPY program is started, then window_title must reference text at offset 0
(zero) from the start of the title string. Otherwise, window_title may reference text at any offset within the required
window's title.

If more than one window title contains the substring window_title, then focus will be placed on the window where
window_title occurs at the lowest offset within the title string. Furthermore, if this lowest offset is the same for the title
strings of more than one window, then focus will be placed on the first of these windows for which the match was found.

If no fname is specified for WIN output, then an fname of DEFAULTF is used by default.

The window_title value may be specified as a quoted character constant, a declared variable of character data type or a
Type 1 (field_pLENn), Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

ERROR 617, indicating that the window title was not found, will be returned if window_title is not found anywhere within
the title string of any of the open windows.

WTO
Indicates that, at SELCOPY end-of-job, a summary of the number of records written to fname will be logged to
stderr/SYSOUT. The logged output will have the following format:

 SELCOPY/xxx r.el #records=RECTOT FILE=fname yyyy/mm/dd hh:MM

Chapter 4. SELCOPY Operations WRITE

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 264

VSAM Write

Sequential output is supported to VSAM cluster data sets that have already been defined using IDCAMS.

By default, the WRITE operation will output new records to a VSAM data set without replacing existing records. However, if the
data set is defined as being reusable and parameter REUSE is specified on the OPEN or WRITE operation for fname, then the
data set will be reset so that all existing records are lost (i.e. the high-used RBA is reset to 0 during OPEN). Writing to an empty
data set or one which has been reset is equivalent to loading the file.

Output to a VSAM data set is keyed-sequential for KSDS and RRDS, and addressed-sequential for ESDS.

KSDS Write

Provided the records are written in ascending order of key sequence, records will be inserted at their appropriate location within
the keyed data set.

Records may be of variable length as determined by the output DCLvar variables, constants and/or field definitions specified on
the WRITE operation. If an output record length exceeds the maximum defined for the data set, then the record is automatically
truncated at the maximum length and SELCOPY return code 5 is set.

 SELCOPY/MVS 3.30 at CBL - Bridgend UK (Internal Only) 2015/10/29 16:11 PAGE 1
 --- ---------------- --------

 option datawidth=65 pagedepth=9000

 1. read inpks dsn='NBJ.SSVSAM.KSDS' * First read our KSDS sequentially.

 if eof inpks * If end-of-file flagged.
 2. then close inpks * Close the input KSDS.
 3. then space 1 * Print a blank line.
 4. then do write_routine * Write new records to our KSDS.
 5. then goto eoj * Must force end-of-job.

 6. print * Print existing records.
 7. goto get * Loop back to selection 1. (READ)

 ==write_routine==

 8. read card * Input card records.

 if eof card * If end-of-file flagged for CARD.
 9. then goto write_routine_end * Drop out of the sub-routine.

 10. print * Print the card records.
 11. write outks dsn='NBJ.SSVSAM.KSDS' defer * Open for output and write to our KSDS.
 12. goto write_routine * Loop back to READ CARD.

 =write_routine_end=

 13. return * Return to main processing loop.

 end

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0...., ------
 1 1 6 0000000 CBLM05 2015/10/08 CBL.INST.CBL15112.SZZSDBRM 52
 2 2 6 0000010 CBLM08 2015/10/26 CBL.INST.CBL15112.SZZSDIST.CMX 56
 3 3 6 0000020 CBLM05 2015/10/26 CBL.INST.CBL15112.SZZSDIST.IPOPROC 60
 4 4 6 0000030 CBLM08 2015/10/19 CBL.INST.CBL15112.SZZSEXEC 52
 5 5 6 0000040 CBLM05 2015/10/27 CBL.INST.CBL15112.SZZSLOAD 52
 6 6 6 0000050 CBLM14 2015/10/08 CBL.INST.CBL15112.SZZSMAC 51
 7 7 6 0000060 CBLM05 2015/10/20 CBL.INST.CBL15112.SZZSSAM1 52
 8 8 6 0000070 CBLM14 2015/10/26 CBL.INST.CBL15112.SZZSTENG 52

 1 1 10 0000005 CBLM05 2015/10/26 CBL.INST.CBL15112.SZZSDIST.CBLE 57
 2 2 10 0000015 CBLM14 2015/10/26 CBL.INST.CBL15112.SZZSDIST.IPO 56
 3 3 10 0000025 CBLM08 2015/10/26 CBL.INST.CBL15112.SZZSDIST.TLIB 57
 4 4 10 0000035 CBLM08 2015/10/20 CBL.INST.CBL15112.SZZSHELP.HTML 57
 5 5 10 0000045 CBLM06 2015/07/21 CBL.INST.CBL15112.SZZSLPA 51
 6 6 10 0000055 CBLM06 2015/10/26 CBL.INST.CBL15112.SZZSPENG 52
 7 7 10 0000065 CBLM08 2015/07/21 CBL.INST.CBL15112.SZZSSAM2 52
 ,....1....,....2....,....3....,....4....,....5....,....6....,

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---
 1 8 READ INPKS 256 60 U 8 ***** NBJ.SSVSAM.KSDS
 2 1 CLOS INPKS 256 60 U 8 ***** NBJ.SSVSAM.KSDS
 3----5 1
 6----7 8

 =write_routine=
 8 7 READ CARD 27998 57 VB 7 SYS15302.T161135.RA000.NBJ.R0118091
 9 1
 10 7
 11 7 WR OUTKS 256 57 U 8 ***** NBJ.SSVSAM.KSDS
 12 7

 =write_routine_end=
 13 1 =ret=

 ** SELCOPY/MVS 3.30.002 2015/09/17 Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 24. VSAM KSDS Table Output.

Chapter 4. SELCOPY Operations VSAM Write

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 265

Using WRITE to output records to a KSDS data set is significantly more efficient than opening the KSDS for direct output
(OPEN or READ with parameter UPD) and then executing INSERT operations. The INSERT method of adding records should
only be used if either of the following is true:

Direct processing is required in order to issue DELETE and UPDATE operations.1.
It is not possible to sort the output records into key sequence before they are written to the KSDS data set.2.

If output records are not in key sequence, the WRITE operation will fail and ERROR 538 is returned.

RRDS Write

Fixed length records are written to RRDS record slots starting at the first slot of the data set. If this slot is occupied, a duplicate
error occurs and the WRITE operation fails with ERROR 538.

The output records are of fixed length equal to that defined for the RRDS data set. Any output record length implied by the
current value of variable LRECL, or specified by a the output DCLvar or field definition, is ignored.

ESDS Write

Variable length records, determined by the length of the output DCLvar variables, constants and/or field definitions specified on
the WRITE operation, are written following the last record of an ESDS data set.

If an output record length exceeds the maximum defined for the data set, then the record is automatically truncated at the
maximum length and SELCOPY return code 5 is set.

ODBC Table Write

This feature is currently supported on Microsoft Windows platforms only.

Database table output is supported for a variety of proprietary database products using ODBC (Open Database Connectivity).
Using the ODBC interface, SELCOPY allows rows to be written to a database table or view.

The SELCOPY WRITE operation generates and executes a dynamic SQL INSERT statement using the specified table or view
name, identified by parameter TABLE table_name, and a list of columns identified by parameter FMT column_list. Note that if FMT
column_list is not specified, then column_list represents every column in the table or view, in the order defined by the table or view.
The format of the SQL INSERT statement is:

 INSERT INTO table_name (column_list) VALUES(?, ... ?)

Specification of a system name, ODBC userid and password is mandatory to identify the ODBC Data Source Name for the required
database and to establish the user's access authority to the database tables. Similarly, a user work area must also be defined
which has a length which is greater than or equal to the output record (table row) length. This length is equal to the sum of the
selected column data area lengths, plus 1 for each character that separates the column data areas. If no work area is defined,
ERROR 586 is returned.

The names and sequence order of columns selected for insert are identified by the FMT parameter. The column sequence defines
the order in which the column data areas must exist in storage and so the order in which input values are to be specified. Columns
in the table or view that are not selected by FMT, will be assigned default values (if supported by the column definition) when the
row is inserted. If FMT column_list is not specified, then a column data area must exist for every column in the table or view, in the
order defined by the table or view.

The length of an individual column's data area depends on the source data type of the column. For table columns of fixed or
variable character data type, the length of the column data area is the defined (maximum) column length. For numeric data types,
the length of a column data area is the minimum length required to contain the maximum and minimum values supported by the
column data type, following its conversion to character numeric format. See ODBC table read for the column data area lengths
required for each numeric and date data type.

The insert values must be moved to the relevant column data areas prior to executing the WRITE operation and the WRITE
parameter FROM should be used to identify the location of the first column data area (default position 1).

The format of an insert value within a column data area is as follows:

Regardless of the data type of the column into which the value will be inserted, all values must be supplied in fixed length
character format. Numeric and date values must be in character decimal format as described for ODBC table read.

1.

For columns of character data type, values should be left adjusted within the column data area if leading blanks are not
required.

2.

Each value must be padded with blanks to the length of the column data area.3.

Specification of insert values is simplified by assigning the required values to the declared variables that are automatically
generated by SELCOPY when the output table is opened during control statement analysis. These declared variables are of fixed
character data type and have names that match the names of the columns selected for insert. See description of Column Declared
Variables under ODBC table read.

Chapter 4. SELCOPY Operations KSDS Write

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 266

 SELCOPY/WNT 3.30 at CBL - Bridgend UK (Internal Only) 2015/10/23 18:26 PAGE 1
 --- ---------------- --------

 equ wid 70 * Print length.
 equ irec 1 * DBASE Input Area.
 equ crec 201 * CARD Input Area.
 equ orec 401 * Output Area for INSERT statement.

 opt worka 2200 dw=wid pw=94 pd=9999 noptot logsql='c:\tmp\ssdb2m13.log'
 opt user=XXX odbcpass="XXX" ssn=XXXXXXX * UserId, Passwd, ODBC Sub-System Name.

 * Drop and recreate the tabe to ensure empty.

 1. odbc "drop table SELCOPY_TEST"
 2. odbc "create table SELCOPY_TEST \
 (color varchar(10), \
 date_sold date, \
 price decimal(15,2), \
 notes varchar(20))"
 3. odbc "commit"

 ==populate== * Loop to insert rows in table.

 4. read card into crec fill

 if eof card
 5. then close fnam3
 6. then odbc "commit"
 7. then space
 8. then goto readv

 9. do build_orec

 10. insert fnam3 table='SELCOPY_TEST' from orec * No FMT, will default to all columns.
 11. goto populate

 ==readv== * Loop to verify all rows inserted.

 12. read fnamv table='SELCOPY_TEST' into irec HDR defer

 if eof fnamv
 13. then eoj

 14. print length=wid from irec stopaft=222
 15. goto readv

 16. goto eoj

 ==build_orec== ** Sub-Routine **

 * Needed as a subrtn so that references to COLOR, DATE_SOLD, PRICE and NOTES occur
 * after the reference to INSERT fnam3 which defines the column positions.
 17. NOTES+orec-1 = 20 at crec+60 * Len=20
 18. PRICE+orec-1 = 20 at crec+40 * Len=17
 19. DATE_SOLD+orec-1 = 20 at crec+20 * Len=19
 20. COLOR+orec-1 = 20 at crec+00 * Len=10
 21. print length=wid from orec stopaft=222
 22. =return=

 end

 INPUT SEL SEL RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 1 1 21 Crimson 2009-08-07 5.55 Must be ISO date fmt 80
 2 2 21 Grey 2008-12-31 395.22 Only 1 sale 71
 3 3 21 Violet 2008-09-12 14.99 Sweet 65
 4 4 21 Rose 2008-08-29 3.62 Gentle 66

 1 1 14 COLOR |DATE_SOLD |PRICE (17) |NOTES (20) | 61
 2 2 14 ----------|----------|-----------------|--------------------| 61
 3 3 14 Crimson |2009-08-07|5.55 |Must be ISO date fmt| 61
 4 4 14 Grey |2008-12-31|395.22 |Only 1 sale | 61
 5 5 14 Violet |2008-09-12|14.99 |Sweet | 61
 6 6 14 Rose |2008-08-29|3.62 |Gentle | 61
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7

 ** SELCOPY/WNT 3.30.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 25. ODBC Table Output.

Chapter 4. SELCOPY Operations ODBC Table Write

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 267

Window Keystroke Write

This feature is supported on Microsoft Windows platforms only.

SELCOPY is able to write keystrokes to any open window in the Microsoft Windows system in which it executes. (e.g. a web
browser, email client, text editor or 3270 emulator.) The effect is identical to a user switching focus to the required application
window then performing keyboard keystrokes to navigate the window display or enter text.

The target window is made the focus and is identified by its title (i.e. the text displayed in the title bar of a window). If not already
running, an application window may be started using the SYSTEM operation.

Parameter WIN indicates that window keystroke processing is to be performed and specifies a text substring that uniquely identifies
the title of the window to which keystrokes will be sent.

The output data references a string of characters which are interpreted as a sequence of keystrokes. When the WRITE operation is
executed, SELCOPY executes each individual keystroke in the sequence order in which they occur in the character string.

Keystroke Syntax

The syntax of a keystroke character string is as follows:

 (1)
 +---+
 v |
 |-+-- key_char -----+--+--------------+-+-------------+-+-----------------+-|
 | | | | | | | |
 +- [key_special] -+ +- [TIMES=int] + +- [WAIT=int] + +- [INTERVAL=int] +
 | | | |
 +- [key_combo] ---+ +- [X=int]-----+
 (2)

(1) Blank characters are treated as key_char specifications and so cannot be used to separate keystroke parameters.
However, blank separators are supported when specified within keystroke delimiter characters (as defined by
KEYENC).

(2) WRITE parameter KEYENC identifies the character pair used to delimit keystroke parameters. Default is "[]"
(square brackets).

Keystroke Parameters

key_char
An unquoted, case-sensitive literal character constant of length 1 representing a key on the keyboard which, when
typed, represents a character visible on the display device. e.g. Z (upper case "z") represents keystroke shift-z.
Therefore, if caps lock is on, shift-z would result in lower case "z" being typed.

Note that key_char may be blank representing a blank (space bar) keystroke. Therefore, blank characters may not be
used to delimit keystrokes that are not enclosed by keystroke delimiter characters. e.g. "A [TIMES 3]" represents
shift-a followed by 3 space bar key depressions.

Since key_char is a single character, it must not be enclosed by keystroke delimiter characters.

[key_special]
A keystroke may be a key represented by an unquoted, case-insensitive literal character constant which has a length
greater than 1 (e.g. [ENTER] or [enter] represents the Enter key). Because key_special is longer than 1 character, it
must be enclosed in keystroke delimiter characters.

key_special is a Windows virtual-key code name with the "VK_" prefix omitted. Most, but not all, of these key codes are
supported by SELCOPY. See Microsoft Developer Network documentation on "Virtual Key Codes" at:

http://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx

Cursor movement is achieved with [LEFT], [RIGHT], [UP] and [DOWN], and PFkeys may be specified as [F1],
[F23], etc. For convenience, SELCOPY also supports the following key_char synonyms and abbreviations:

[RETURN] [CR] [ENTER]

[LEFT] [LE]

[RIGHT] [RI]

[DOWN] [DO] [DN]

[MENU] [ALT]

[CONTROL] [CTL] [CNTL] [CTRL]

Chapter 4. SELCOPY Operations Window Keystroke Write

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 268

http://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx

[key_combo]
Represents a key_char or key_special keystroke in combination with one of the special [ALT], [CTL] or [SHIFT] key
modifiers.

To do this, the key_char or key_special keystroke value must be specified immediately before the closing keystroke
delimiter character of [ALT], [CTL] or [SHIFT]. Since [ALT], [CTL] and [SHIFT] are also key_special keystrokes, they
too can be modified by another key modifier, thus simulating a keystroke involving more than one key modifier. e.g.
Ctrl+Alt+Z)

[ALT x] alt-x

[ALT [F1]] alt-F1

[CTL [ALT z]] ctrl-alt-z

[CTL [SHIFT [F9]]] ctrl-shift-F9

[TIMES=int]
[X=int]

TIMES (or X) specifies decimal integer value, int, and is used to determine the number of times the preceding
keystroke (or keystroke combination) is to be performed. e.g.

 WRITE KEYO WIN="Title" "abc[times 7]def [x 5]g" * "abcccccccdef g".
 WRITE KEYO "[left][times 26]" * Cursor left 26 times.

[INTERVAL=int]
[INTVL=int]
[DELAY=int]

INTERVAL (or INTVL or DELAY) specifies decimal integer value, int, and may used to override the value specified by
the WRITE parameter, INTERVAL.

Like the WRITE parameter, int specifies the number of milli-seconds that must elapse before the next keystroke (or
keystroke combination) is performed.

This time interval will take effect only after INTERVAL has been processed within the keystroke sequence order.
Thereafter, the interval will apply to all subsequent keystrokes performed by the current, or subsequent, WRITE
operations for fname. The interval value may be further changed by an INTERVAL parameter on a subsequent WRITE
operation or by another [INTERVAL=int] specification.

[WAIT=int]
WAIT specifies decimal integer value, int, a one-off number of milli-seconds for which SELCOPY is to pause before
continuing to process the remainder of the keystroke sequence.

If int exceeds 60000 (60 seconds) the requested WAIT is ignored. To pause SELCOPY processing for this length of
time or longer, the SLEEP operation should be used.

Non-US and Non-UK National Keyboards

When SELCOPY is instructed to write a character as a keystroke to a different window, it translates that character to a Virtual
Key Code before passing it to a Microsoft Windows function to actually type it at the cursor position of the target window.

By default, SELCOPY assumes that the destination window has a Standard US Keyboard Layout, which would result in the
following special characters being wrongly interpreted if a non-US keyboard layout is in use (e.g. if a Standard Spanish
Keyboard Layout is in effect):

Character ASCII Hex Description
" x'22' Double quote
x'23' Hash
@ x'40' Commercial at sign
` x'60' Backwards quote
~ x'7E' Tilde
£ x'A3' Currency symbol
¬ x'AC' NOT sign

Conveniently, Microsoft Windows provides a method of cycling through the installed national keyboards which, in addition to the
local region keyboard, usually includes English-US. Pressing the Alt+Shift keys combination will switch to the next, installed
national keyboard.

Chapter 4. SELCOPY Operations Keystroke Parameters

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 269

For English-UK national keyboards, SELCOPY automatically performs an implied [ALT [SHIFT]] prior to processing
keystroke output, and once again when keystroke processing is complete and so no special action is required.

For all other non-US national keyboards, the key_combo, [ALT [SHIFT]] must be specifically included in the keystroke string
to temporarily switch the national keyboard of the target window to English-US. The following sample control statement file
demonstrates this switch to an English-US keyboard and back again:

 * "Non_US_test.ctl" is a file on the current directory of a m/c with a non-US keyboard.
 * ---------------
 system 'start notepad' * No filename, so TitleBar will be "Untitled - Notepad".
 sleep 1 * Wait 1 second, although unnecessary.
 * The notepad window will have a local keyboard layout.

 wr win='untitled' delay 20 \
 '[cr]2013/06/20 20.14 "QUOT2" @AT@ #HASH# in non-US mode.[cr]' * Problems.

 wr win='untitled' '[ALT [SHIFT]]' * To toggle the US/local keyboard layout.
 * Will result in US layout.
 wr win='untitled' delay 5 \
 '[cr]2013/06/20 20.20 "QUOT2" @AT@ #HASH# after switch to US mode.[cr]'

 wr win='untitled' '[ALT [SHIFT]]' * To toggle the US/local keyboard layout.
 * Will result in restoring local layout.

 wr win RESET * To return focus to the window which
 * issued the command to run SELCOPY.

Executing SELCOPY against this control statement file will open the Notepad application for a new, "untitled" document and
update it as follows:

 2013/06/20 20.14 ~QUOT2~ "AT" £HASH£ in non-US mode.

 2013/06/20 20.20 "QUOT2" @AT@ #HASH# after switch to US mode.

Note that, since SELCOPY simulates keyboard input as if typed by a user at the target window, the Alt+Shift must be performed
at the target window and not at the window in which SELCOPY executes. The national keyboard used in the SELCOPY
execution window is irrelevant since the source of the keystroke string being processed is not via a keyboard but exists in
SELCOPY's storage as data.

Keystroke Example

The following example demonstrates syntax that starts a web browser pointing at a search engine page, and then types and
enters text at the search field prompt .

 selcopy !system 'start FIREFOX www.google.co.uk' !sleep 10 !write win=goo 'tn3270[cr]' !end

This same syntax may be implemented as a more permanent solution by saving it in a batch command file script. The first
parameter identifies the topic to be searched. e.g. a file "google.cmd" may be added to a folder in the search PATH containing
the following:

 : c:\djh\ca\google.cmd ** L=001 --- 2013/06/16 21:53:06 (L07)
 @echo off
 : Invoke a google search.
 : L=001 2013/06/16 -djh- Use SLC to enter topic into google's topic box.
 if .%1==. (
 echo google.cmd: Param 1 reqd to define topic.
 goto end)

 start FIREFOX www.google.co.uk
 selcopy !option noban !sleep 10 !write win=goo "%1[CR]" !end
 :end

Thereafter, to perform a Google search, simply enter "google" followed by the search text at a Windows terminal command
prompt or in the "Run" dialog. e.g.

 google tn3270

Chapter 4. SELCOPY Operations Non-US and Non-UK National Keyboards

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 270

XV
Transfer the value of a variable between the controlling environment and a SELCOPY declared variable or field definition.

Syntax:

>>--- XV --+-- FETCH ------- varname ------ INTO ----- target ---+----------->
 | |
 +-- NEXT -------- varname ------ INTO ----- target ---+
 | (1) |
 | |
 | +-- FROM --+ |
 | | | |
 +-- SET --------- varname ---+----------+-- source ---+
 | (1) |
 | |
 +-- DROP -------- varname ----------------------------+
 | (2) |
 | |
 +-- ARG ------+----------------- INTO ----- target ---+
 | (2) |
 | |
 +-- SOURCE ---+
 | (2) |
 | |
 +-- VERSION --+
 (2)

 >--+-------------------+--+-----------------+--+-----------+-+-----------+--><
 | | | | | | | |
 +- STOPAFT -- int --+ +- TIMES -- int --+ +- NOPCTL --+ +- NOPSUM --+
 | |
 +------- NOPRINT ---------+

Syntax Notes:

(1) NEXT and SET are applicable in z/OS and z/VM CMS REXX environments only. i.e. Not applicable in a Microsoft
Windows or POSIX environment.
SET, but not NEXT, is also supported for CMS EXEC2 variables.

(2) DROP, ARG, SOURCE and VERSION are applicable in a z/VM CMS REXX environment only. i.e. Not applicable
in a z/VM EXEC2, z/OS, Microsoft Windows or POSIX environment.

Description:

The XV operation provides a method of extracting, or updating the value of a variable from the controlling procedure/environment.
The function keywords FETCH (GET), NEXT, SET, DROP ARG, SOURCE and VERSION dictate the action to be performed by the
XV operation.

For Microsoft Windows and POSIX environments, only the FETCH function is supported for extracting the value of an environment
variable. The value fetched is the same as would be obtained by an environment variable reference. e.g. %PATH%

In a z/OS REXX environment, the FETCH, NEXT and SET functions are supported.
In a z/VM CMS REXX environment, all XV functions are supported.
In a z/VM CMS EXEC2 environment, only the FETCH and SET functions are supported and reference to the EXEC2 variable
name, varname, must not include the "&" (ampersand) prefix.

The return code value set by the XV operation is assigned to the internal variable RETSYS. e.g. In z/VM CMS, the REXX return
code passed back to SELCOPY for the XV FETCH NEXT statement is as documented in IBM's "z/VM CMS Callable Services
Reference" manual for the routine, DMSCGX. Some of the more common return code values set by this function and assigned to
RETSYS include:

0 Normal completion.
200 The data assigned to target and/or varname has been truncated. SELCOPY will also set its own RC=8.
202 REXX is not active.
206 All variables have been processed.
207 Unsupported function. (This return code is issued if DMSCGX is called from within an EXEC2 environment.)

Chapter 4. SELCOPY Operations Keystroke Example

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 271

Parameters:

FETCH
GET

Fetch the value of the environment variable referenced by varname and assign it to target. If the varname is a stem of a
REXX variable, the initial value of that stem (if any) is returned.

NEXT
Applicable only in a (z/OS or z/VM CMS) REXX environment, the NEXT function will fetch the name and value of the next
variable from the stack of variables known to the language processor. (i.e. all those of the current generation, excluding
those hidden by PROCEDURE instructions). The order in which the variables are revealed is not specified.

The variable name will be assigned to varname and the value to target. Therefore, for the NEXT function, varname cannot
be specified as a character constant.

By repeatedly executing the NEXT function, the SELCOPY program can obtain all the REXX variables of the current
generation.

SET
Applicable only in a (z/OS or z/VM CMS) REXX or (z/VM CMS) EXEC2 environment, the SET function will set the value of
a new or existing variable. If the name is a REXX variable stem, then all variables with that stem are set.

DROP
Applicable only in a z/VM CMS REXX environment, the DROP function will drop the REXX variable specified by varname,
if it exists. If the name given is a REXX variable stem, then all variables starting with that stem are dropped.

ARG
Applicable only in a z/VM CMS REXX environment, the ARG function will fetch the primary argument string and assign it
to target. i.e. The first argument string passed to the REXX procedure that would be parsed by the PARSE ARG
instruction.

SOURCE
Applicable only in a z/VM CMS REXX environment, the SOURCE function will fetch the source string and assign it to
target. i.e. the string that would be returned by the PARSE SOURCE instruction.

VERSION
Applicable only in a z/VM CMS REXX environment, the VERSION function will fetch the version string and assign it to
target. i.e. The string that would be returned by the PARSE VERSION instruction.

varname
If the function is FETCH, SET or DROP, varname identifies the name of the variable for which the value will be fetched,
set or dropped. For these functions, varname may be specified as an unquoted literal, a declared variable of character
data type or a Type 2 (field_p1p2) or Type 3 (field_nATp) field definition.

If the function is NEXT, then varname identifies the target to which the next variable name will be assigned. For this
function, varname may be specified as a declared variable or field definition only. (i.e. not an unquoted literal.)

source
For the function SET only, source identifies the source from which the variable's value will be assigned. source may be
specified as a quoted character constant, a declared variable of character data type or a Type 2 (field_p1p2) or Type 3
(field_nATp) field definition.

target
For the functions FETCH, NEXT, ARG, SOURCE and VERSION only, target identifies the target to which the variable's
value will be assigned. target may be specified as a declared variable of character data type or a Type 2 (field_p1p2) or
Type 3 (field_nATp) field definition.

NOPCTL, NOPSUM, NOPRINT
See common parameters NOPCTL, NOPSUM, NOPRINT for details.

STOPAFT int
See common parameter STOPAFT for details.

TIMES int
See common parameter TIMES for details.

Example:

The following sample output is from a SELCOPY program executed from a z/VM CMS REXX procedure that uses the XV NEXT
operation to report all current generation REXX variables and their values.

Chapter 4. SELCOPY Operations XV

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 272

 SELCOPY/CMS 3.30 at CBL - Bridgend UK (Internal Only) 2016/01/11 16:48 PAGE 1
 --- ---------------- --------

 DECLARE VNAME CHAR(15)
 DECLARE VVALUE CHAR(40)

 ==VARLOOP==

 1. XV NEXT VNAME INTO VVALUE

 IF RETSYS=0
 2. THEN PLOG TYPE=C 'Variable Name: ' VNAME ' Value: ' VVALUE
 3. THEN GOTO VARLOOP

 INPUT SEL SEL 1 RECORD
 RECNO TOT ID. 1 2 3 4 5 6 7 8 9 0 LENGTH
 ----- --- ---,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0....,....0 ------
 0 1 2 Variable Name: RC Value: 8 80
 0 2 2 Variable Name: XPARM.NO Value: FAILURE 80
 0 3 2 Variable Name: XPARM.UNKNOWN Value: Not Found 80
 0 4 2 Variable Name: XPARM.OK Value: DJH 80
 0 5 2 Variable Name: JGE Value: OK 80
 ,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....0

 SUMMARY..
 SEL-ID SELTOT FILE BLKSIZE LRECL FSIZE CI DSN
 ------ ------ ---- ------- ----- ----- -- ---

 =VARLOOP=
 1 6
 2----3 5

 ** SELCOPY/CMS 3.30.001 Licensed by Compute (Bridgend) Ltd +44 (1656) 652222 & 656466 **
 ** Expiry: 14 Jul 2016 **

Figure 26. XV NEXT operation.

Chapter 4. SELCOPY Operations XV

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 273

Appendix A. Regular Expression Summary

The following tables are a summary of all regular expression operators, text specifiers and predefined expressions.

Operators and Text Specifiers

Operator Description

\

Escape the next char, treat as text, except for certain standard ESC sequences:

 \a Apostrophe (Single Quote) (Not yet implemented.)
 \q Double Quote (Not yet implemented.)
 \b BS BackSpace ASCII X'08' EBCDIC X'16'
 \f FF FormFeed ASCII X'0C' EBCDIC X'0C'
 \r CR Carriage Return ASCII X'0D' EBCDIC X'0D'
 \l NL New Line EBCDIC X'15' (Not yet implemented.)
 \n LF LineFeed ASCII X'0A' EBCDIC X'25'
 \t HT Horizontal Tab ASCII X'09' EBCDIC X'05'
 \xnn Hexadecimal character code X'xx'
 \nnn Octal character code nnn e.g. \072 or \72 (equivalent to \x3A)

^ Must be at POS 1 of source data field if '^' is 1st character of RGX.
$ Must have exhaused the source data field.

[class] Matches any character in enclosed class.
[~class] Matches any character NOT in enclosed class. The '~' must be 1st in class.
[a-z] Matches any character within the range 'a' to 'z', or any other range.
() Groups any enclosed RGX to be treated as a unit.

(x1|x2|...) Alternation where any one of the | separated terms gives a match.

Repetition Operators

* 0 Min Closure - match prev term 0 or as many times as reqd.
+ 1 Min Plus - match prev term 1 or as many times as reqd.
@ 0 Max Closure - match prev term 0 or as many times as Possible.
1 Max Plus - match prev term 1 or as many times as Possible.
^n Power factor - match prev term n times precisely, if '^' not 1st character of RGX.

~ Not function - succeeds only if next RGX term is NOT matched. Advances the RGX, but not the source data
field.

{ } Tagged expression enables reference, later in the RGX or in the substitution field of a CHANGE statement, to
the data matched within the enclosing braces.

&n References the data matched in the nth tagged expression
? Wildcard character - matches any single character

: Treats the colon and the next character as shorthand for a Predefined Expression. The next character must be
one of the lower case letters: a b c d h i n q w z

Predefined Expressions

Name Definition Description
:a [a-zA-Z0-9] Alphanumeric character
:b ([\t]#) White space (a string of blanks and tabs).
:c [a-zA-Z] Alphabetic character
:d [0-9] Numeric digit
:h (((0x)|)[0-9a-fA-F]#) Hexadecimal numbers
:i ([a-zA-Z_\\$][a-zA-Z0-9_\\$]@) C-language identifiers
:n (([0-9]@.[0-9]#)|([0-9]#)) Numbers with or without a decimal point
:q (("[~"]@")|('[~']@')) Quoted string (in single or double quotes).
:w ([a-zA-Z]#) Word (a string of alphabetic characters).
:z ([0-9]#) Integer (a string of numeric digits).

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 274

Appendix B. Operation, Parameter and Argument Keywords

The following tables are a cross reference of all operation, parameter and argument keywords supported by SELCOPY.

Operation to Parameter Keyword Cross-Reference

Operation Parameters
ADD INTO TO
ADJC See CENTRE
ADJL See LEFT
ADJR See RIGHT
CALL No specific parameter keywords.
CENTER See CENTRE
CENTRE FROM TO
CHANGE CASEI FILL HITS NULL FILL
CHOP No specific parameter keywords.
CLOSE APPEND BDW BLKSIZE DD DEFER DIR

DIRDATA DIRTYPE DSN DSNPFX EOL ESDS
FILL FMT HEADER KEYLEN KEYPOS KSDS
LIST LRECL NOBDW NORDW NOTRUNC ODBCPASS
RAW RDW RECFM REUSE RRDS SELECT
SEP SORT SORTDIR SQL SSN SUBDIR
TABLE TABS TRUNC UPD USER VSAM
WHERE WIN

COMPRESS ALL DLM ENC ESC FILL FLEN
FROM IFNEC PAD STR TO

CP FORMAT FROM INTO REPLY
CVA See CVXX (CVEA)
CVB See CVXX (CVPB)
CVD See CVXX (CVBP)
CVE See CVXX (CVAE)
CVH See CVXX (CVCH)
CVDATE DATECB FROM NOW TO
CVXX FROM TO
DECLARE BIN CHAR CHARVARYING CHARZ CSTRING DEC

DOUBLE FLOAT FORMAT FP INIT NTS
POS VARCHAR VHAR ZCHAR

DELETE DSN FILE TABLE
DIVIDE BY INTO REM
DO FORMAT FROM
DUMMY No specific parameter keywords.
END No specific parameter keywords.
EQU No specific parameter keywords.
EXPAND DELIM ENC ESC FILL FLEN FROM

PAD TO
EOJ See GOTO EOJ
FLAG EODIR EODISK EOMBR EOMEMB FILE
FLUSH FILE
GENERATE BASE RANGE
GET See READ
GOSUB See DO
GOTO CANCEL EOJ GET
IF/AND/OR AND ANY CASEI DATA DIR ELSE

EOF FILE FILL INCOUNT LINE MATCHLEN
NOT NULL NUMERIC OR PAD POS
PTR REVERSE STEP THEN

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 275

IN See READ
INCLUDE No specific parameter keywords.
INPUT See READ
INSERT DSN FILE FORMAT FROM
LEFT FROM TO
LOG DATAWIDTH DUMPALL DUMPENC FORMAT FROM INTO

PAGEWIDTH REPLY TYPE
LOWER FROM TO
MOD FILL FORMAT FROM MOD PAD
MOVE FILL FROM PAD TO
MULTIPLY BY INTO
ODBC ODBCPASS PASSWORD SSN USER
OPEN APPEND BDW BLKSIZE DD DEFER DIR

DIRDATA DIRTYPE DSN DSNPFX EOL ESDS
FILL FMT HEADER KEYLEN KEYPOS KSDS
LIST LRECL NOBDW NORDW NOTRUNC ODBCPASS
RAW RDW RECFM REUSE RRDS SELECT
SEP SORT SORTDIR SQL SSN SUBDIR
TABLE TABS TRUNC UPD USER VSAM
WHERE WIN

OPTION ABTRAP BANNER CALLTYPE CBLSQLOG DATAWIDTH DEFAULTDIR
DEFAULTFP DIRTYPE DSNPFX DUMPALL DUMPENC ENVFAIL
ENVVAR ERRLIM ERRMAX FILL HEAD LIBNAME
LOGSQL MFC NOBANNER NOENVVAR NOPCTL NOPRINT
NOPSUM NOPTOT NORDW NOSUB NOTRAP ODBCPASS
PAD PAGEDEPTH PAGEWIDTH PASS PRINTABLE PRRECLEN
PRTCTL PRTSUM RANGE RC_KEYNF RDW REPORT
SEP SITE SORTDIR SQLOG SSN SUBDIR
SUMPRT TRAP TYPEDIR UNPRINTABLE USER USERID
WORKAREA WORKLEN

PACK See CVXX (CVCP)
PACKB See CVXX (CVCB)
PARSE See CHOP
PERFORM See DO
PLOG DATAWIDTH DUMPALL DUMPENC FORMAT FROM PAGEDEPTH

PAGEWIDTH TYPE
PRINT DATAWIDTH DUMPALL DUMPENC FORMAT FROM PAGEDEPTH

PAGEWIDTH TYPE
RANDOM See GENERATE
READ ALTX BDW BLKSIZE BWD DD DEFER

DIR DIRDATA DIRTYPE DSN DSNPFX EOL
ESDS FILE FILL FMT FWD HEADER
INTO KEQ KEY KEYIX KEYLEN KEYPOS
KGE KSDS LIST LRECL NOBDW NODSNPFX
NORDW NOUSERID ODBCPASS PAD PASSWORD RAW
RBA RDW REC RECFM RECSIZE RRDS
SELECT SEP SORT SORTDIR SQL SSN
STARTKEY STARTKGE STARTRBA STARTREC STOPAFT SUBDIR
TABLE TABS TYPE TYPEDIR UPD USER
USERID VSAM WHERE WORKAREA WORKLEN WTO

RETURN No specific parameter keywords.
RIGHT FROM TO
SLEEP HOURS MINS SECS
SPACE No specific parameter keywords.
STACK EOF FIFO FORMAT FROM LIFO NULL
START No specific parameter keywords.
STOP See GOTO EOJ
SUB FROM INTO
SUSP No specific parameter keywords.

Appendix B. Operation, Parameter and Argument Keywords Operation to Parameter Keyword Cross-Reference

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 276

SYSTEM FORMAT FROM
TRAN ASCII EBCDIC FROM HITS LOWER PRINT

TAB TO UPPER
UNPACK See CVXX (CVPC)
UNPACKB See CVXX (CVBC)
UPDATE DSN FILE FORMAT FROM TABLE
UPPER FROM TO
UTIME DSN FILE FTIME
WRITE APPEND BDW BLKSIZE DEFER DELAY DSN

DSNPFX EOL ESDS FILE FILL FMT
FORMAT FROM INTERVAL KEYENC KEYENCERR KEYLEN
KEYPOS KSDS LRECL NEWBLK NOBDW NODSNPFX
NOKEYENC NOKEYENCERR NOTRUNC NOUSERID ODBCPASS PAD
PASSWORD RECFM RECSIZE RRDS SSN TABLE
TRUNC USER USERID VSAM WIN WTO

XV ARG DROP FETCH GET NEXT SET
SOURCE VERSION

Parameter to Operation Keyword Cross-Reference

Parameter Operation(s)
ABTRAP OPTION
ALL COMPRESS
ALTX READ
AND IF/AND/OR
ANY IF/AND/OR
APPEND CLOSE OPEN WRITE
ARG XV
ASCII TRAN
AT Field Definitions
BANNER OPTION
BASE GENERATE
BDW CLOSE OPEN READ WRITE
BIN DECLARE
BLKSIZE CLOSE OPEN READ WRITE
BWD READ
BY DIVIDE MULTIPLY
CALLTYPE OPTION
CANCEL GOTO
CASEI CHANGE IF/AND/OR
CBLSQLOG OPTION
CHAR DECLARE
CHARVARYING DECLARE
CHARZ DECLARE
CSTRING DECLARE
DATA IF/AND/OR
DATAWIDTH LOG OPTION PLOG PRINT
DATECB CVDATE
DD CLOSE OPEN READ
DEC DECLARE
DEFAULTDIR OPTION
DEFAULTFP OPTION
DEFER CLOSE OPEN READ WRITE
DELAY WRITE
DELIM EXPAND
DIR CLOSE IF/AND/OR OPEN READ
DIRDATA CLOSE OPEN READ

Appendix B. Operation, Parameter and Argument Keywords Parameter to Operation Keyword Cross-Reference

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 277

DIRTYPE CLOSE OPEN OPTION READ
DLM COMPRESS
DOUBLE DECLARE
DROP XV
DSN CLOSE DELETE INSERT OPEN READ UPDATE

UTIME WRITE
DSNPFX CLOSE OPEN OPTION READ WRITE
DUMPALL LOG OPTION PLOG PRINT
DUMPENC LOG OPTION PLOG PRINT
EBCDIC TRAN
ELSE IF/AND/OR
ENC COMPRESS EXPAND
ENVFAIL OPTION
ENVVAR OPTION
EODIR FLAG
EODISK FLAG
EOF STACK IF/AND/OR
EOJ GOTO
EOL CLOSE OPEN READ WRITE
EOMBR FLAG
EOMEMB FLAG
ERRLIM OPTION
ERRMAX OPTION
ESC COMPRESS EXPAND
ESDS CLOSE OPEN READ WRITE
FETCH XV
FIFO STACK
FILE DELETE FLAG FLUSH IF/AND/OR INSERT READ

UPDATE UTIME WRITE
FILL CHANGE CLOSE COMPRESS EXPAND IF/AND/OR MOD

MOVE OPEN OPTION READ WRITE
FLEN COMPRESS EXPAND
FLOAT DECLARE
FMT CLOSE OPEN READ WRITE
FORMAT CP DECLARE DO Field Definitions INSERT LOG

MOD PLOG PRINT STACK SYSTEM UPDATE
WRITE

FP DECLARE
FROM CENTRE COMPRESS CP CVDATE CVxx DO

EXPAND Field Definitions INSERT LEFT LOG LOWER
MOD MOVE PLOG PRINT RIGHT STACK
SUB SYSTEM TRAN UPDATE UPPER WRITE

FTIME UTIME
FWD READ
GET GOTO XV
HEAD OPTION
HEADER CLOSE OPEN READ
HITS CHANGE TRAN
HOURS SLEEP
IFNEC COMPRESS
INCOUNT IF/AND/OR
INIT DECLARE
INTERVAL WRITE
INTO ADD CHOP CP DIVIDE LOG MULTIPLY

READ SUB
KEQ READ
KEY READ
KEYENC WRITE
KEYENCERR WRITE

Appendix B. Operation, Parameter and Argument Keywords Parameter to Operation Keyword Cross-Reference

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 278

KEYIX READ
KEYLEN CLOSE OPEN READ WRITE
KEYPOS CLOSE OPEN READ WRITE
KGE READ
KSDS CLOSE OPEN READ WRITE
LENGTH Field Definitions
LIBNAME OPTION
LIFO STACK
LINE IF/AND/OR
LIST CLOSE OPEN READ
LOGSQL OPTION
LOWER TRAN
LRECL CLOSE OPEN READ WRITE
MATCHLEN IF/AND/OR
MFC OPTION
MINS SLEEP
MOD MOD
NEWBLK WRITE
NEXT XV
NOBANNER OPTION
NOBDW CLOSE OPEN READ WRITE
NODSNPFX READ WRITE
NOENVVAR OPTION
NOKEYENC WRITE
NOKEYENCERR WRITE
NOPCTL Common parm OPTION
NOPRINT Common parm OPTION
NOPSUM Common parm OPTION
NOPTOT Common parm OPTION
NORDW CLOSE OPEN OPTION READ
NOSUB OPTION
NOT IF/AND/OR
NOTRAP OPTION
NOTRUNC CLOSE OPEN WRITE
NOUSERID READ WRITE
NOW CVDATE
NTS DECLARE
NULL CHANGE IF/AND/OR STACK
NUMERIC IF/AND/OR
ODBCPASS CLOSE ODBC OPEN OPTION READ WRITE
OR IF/AND/OR
PAD CHANGE COMPRESS EXPAND IF/AND/OR MOD MOVE

OPTION READ WRITE
PAGEDEPTH OPTION PLOG PRINT
PAGEWIDTH LOG OPTION PLOG PRINT
PASS OPTION
PASSWORD ODBC READ WRITE
POS DECLARE Field Definitions IF/AND/OR
PRINT TRAN
PRINTABLE OPTION
PRRECLEN OPTION
PRTCTL OPTION
PRTSUM OPTION
PTR IF/AND/OR
RANGE GENERATE OPTION
RAW CLOSE OPEN READ
RBA READ
RC_KEYNF OPTION
RDW CLOSE OPEN OPTION READ

Appendix B. Operation, Parameter and Argument Keywords Parameter to Operation Keyword Cross-Reference

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 279

REC READ
RECFM CLOSE OPEN READ WRITE
RECSIZE READ WRITE
REM DIVIDE
REPLY CP LOG
REPORT OPTION
REUSE CLOSE OPEN
REVERSE IF/AND/OR
RRDS CLOSE OPEN READ WRITE
SECS SLEEP
SELECT CLOSE OPEN READ
SEP CLOSE OPEN OPTION READ
SET XV
SITE OPTION
SORT CLOSE OPEN READ
SORTDIR CLOSE OPEN OPTION READ
SOURCE XV
SQL CLOSE OPEN READ
SQLOG OPTION
SSN CLOSE ODBC OPEN OPTION READ WRITE
STARTKEY READ
STARTKGE READ
STARTRBA READ
STARTREC READ
STEP IF/AND/OR
STOPAFT READ Common parm
STR COMPRESS
STYLE Field Definitions
SUBDIR CLOSE OPEN OPTION READ
SUMPRT OPTION
TAB TRAN
TABLE CLOSE DELETE OPEN READ UPDATE WRITE
TABS CLOSE OPEN READ
THEN IF/AND/OR
TIMES Common parm
TO ADD CENTRE COMPRESS CVDATE CVxx EXPAND

LEFT LOWER MOVE RIGHT TRAN UPPER
TRAP OPTION
TRUNC CLOSE OPEN WRITE
TYPE Field Definitions LOG PLOG PRINT READ
TYPEDIR OPTION READ
UNPRINTABLE OPTION
UPD CLOSE OPEN READ
UPPER TRAN
USER CLOSE ODBC OPEN OPTION READ WRITE
USERID OPTION READ WRITE
VARCHAR DECLARE
VERSION XV
VHAR DECLARE
VSAM CLOSE OPEN READ WRITE
WHERE CLOSE OPEN READ
WIN CLOSE OPEN WRITE
WORKAREA OPTION READ
WORKLEN OPTION READ
WTO READ WRITE
ZCHAR DECLARE

Appendix B. Operation, Parameter and Argument Keywords Parameter to Operation Keyword Cross-Reference

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 280

Parameter to Argument Keyword Cross-Reference

Parameter Argument(s)
ABTRAP OFF ON
CALLTYPE DIRECT VIA_SLCCALL
DEFAULTFP BFP BIN HEX HFP NATIVE
DSNPFX NO YES
DUMPALL NO
EOL CR CRLF LF NO
FILE CARD CLIP DUMMY STDIN

(Input only)
STDOUT
(Output only)

SYSIN
(Input only)

FLOAT BFP BIN HEX HFP NATIVE
HEAD NO
KEYENC NO OFF
KEYENCERR NO OFF ON YES
PRRECLEN NO YES
RECFM F FB MFV U V V2

V3 VB
SEP NO
SORTDIR 0 D E N NO P

S
STYLE A B D I J T
TRAP OFF ON
TYPE (Field) B C F P U Z
TYPE=F BFP BIN HEX HFP NATIVE
TYPE (Print) B C D DX H M

MC MP N S
WIN RESET

Argument to Parameter Keyword Cross-Reference

Argument Parameter(s)
0 SORTDIR
A STYLE
B STYLE TYPE (Field) TYPE (Print)
BFP DEFAULTFP TYPE=F FLOAT
BIN DEFAULTFP TYPE=F FLOAT
C TYPE (Field) TYPE (Print)
CARD FILE
CLIP FILE
CR EOL
CRLF EOL
D SORTDIR STYLE TYPE (Print)
DIRECT CALLTYPE
DUMMY FILE
DX TYPE (Print)
E SORTDIR
F RECFM TYPE (Field)
FB RECFM
H TYPE (Print)
HEX DEFAULTFP TYPE=F FLOAT
HFP DEFAULTFP TYPE=F FLOAT
I STYLE
J STYLE
LF EOL
M TYPE (Print)

Appendix B. Operation, Parameter and Argument Keywords Parameter to Argument Keyword Cross-Reference

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 281

MC TYPE (Print)
MFV RECFM
MP TYPE (Print)
N SORTDIR TYPE (Print)
NATIVE DEFAULTFP TYPE=F FLOAT
NO DSNPFX DUMPALL KEYENCERR PRRECLEN KEYENC HEAD

SEP SORTDIR EOL
OFF ABTRAP TRAP KEYENCERR KEYENC
ON ABTRAP TRAP KEYENCERR
P SORTDIR TYPE (Field)
RESET WIN
S SORTDIR TYPE (Print)
STDIN FILE (Input)
STDOUT FILE (Output)
SYSIN FILE (Input)
T STYLE
U RECFM TYPE (Field)
V RECFM
V2 RECFM
V3 RECFM
VB RECFM
VIA_SLCCALL CALLTYPE
YES DSNPFX DUMPALL KEYENCERR PRRECLEN
Z TYPE (Field)

Keyword Abbreviations
The following table identifies the supported keyword abbreviations for SELCOPY operation, sub-operation, parameter, argument
and internal variable keywords.

Abbreviation Type Keyword
A Sub-operation AND
APP Parameter APPEND
B Parameter BIN

Parameter BLKSIZE
BAN Parameter BANNER
BLK Parameter BLKSIZE
C Parameter CHAR

Operation CHANGE
CH Operation CHANGE
CHA Parameter CHAR
CHARV Parameter CHARVARYING
CHAZ Parameter CHARZ
CHG Operation CHANGE
CHV Parameter CHARVARYING
CHZ Parameter CHARZ
CSTR Parameter CSTRING
CVDT Operation CVDATE
D Parameter DEC
DBL Parameter DOUBLE
DCL Operation DECLARE
DEFDIR Parameter DEFAULTDIR
DEFFP Parameter DEFAULTFP
DEL Operation DELETE
DFLTDIR Parameter DEFAULTDIR
DFLTFP Parameter DEFAULTFP
DIRD Parameter DIRDATA
DIV Operation DIVIDE

Abbreviation Type Keyword
DLET Operation DELETE
DLM Parameter DELIM
DW Parameter DATAWIDTH
E Operation END
EL Sub-operation ELSE
ELSEIF Sub-operation ELSE IF
EOD Parameter EODIR
EODSK Parameter EODISK
EOM Parameter EOMEMB
EOMEM Parameter EOMEMB
F Parameter FILE

Parameter FLOAT
FLT Parameter FLOAT
FMAT Parameter FORMAT
FMT Parameter FORMAT
FR Parameter FROM
GEN Operation GENERATE
H Parameter HEAD

Parameter HEADER
HD Parameter HEAD

Parameter HEADER
HDR Parameter HEADER
HEAD Parameter HEADER
I Operation IF
IN Variable INCOUNT

Operation INPUT
INC Operation INCLUDE

Appendix B. Operation, Parameter and Argument Keywords Argument to Parameter Keyword Cross-Reference

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 282

Abbreviation Type Keyword
INI Parameter INIT
INS Operation INSERT
INTVL Parameter INTERVAL
ISRT Operation INSERT
KL Parameter KEYLEN
KP Parameter KEYPOS
L Sub-operation ELSE

Parameter LENGTH
Parameter LRECL
Variable LRECL

LEN Parameter LENGTH
LI Sub-operation ELSE IF
MLEN Parameter MATCHLEN
MULT Operation MULTIPLY
NAT Argument NATIVE
NOBAN Parameter NOBANNER
NOP Parameter NOPRINT
NOUID Parameter NOUSERID
NUL Parameter NULL
NUM Parameter NUMERIC
O Sub-operation OR
OPASS Parameter ODBCPASS
OPT Operation OPTION
OPTIONS Operation OPTION
P Parameter POS
PASS Parameter PASSWORD
PASSWD Parameter PASSWORD
PD Parameter PAGEDEPTH
PR Operation PRINT
PRT Operation PRINT
PW Parameter PAGEWIDTH
R Parameter REPORT
RC Variable RETCODE

Abbreviation Type Keyword
RD Operation READ
REP Operation REPL
RET Operation RETURN
RETCD Variable RETCODE
REV Parameter REVERSE
S Parameter STOPAFT
SEL Parameter SELECT
SORT Parameter SORTDIR
START Parameter STARTKEY
STOP Parameter STOPAFT
SUB Parameter SUBDIR
SYS Operation SYSTEM
T Sub-operation THEN
TAB Parameter TABLE
THENIF Sub-operation THEN IF
TI Sub-operation THEN IF
TR Operation TRAN
TY Parameter TYPE
TYPE Parameter TYPEDIR
UID Parameter USERID
UPD Operation UPDATE
V Parameter VARCHAR
VC Parameter VARCHAR
VCH Parameter VARCHAR
VCHA Parameter VARCHAR
VCHAR Parameter VARCHAR
W Parameter WORKAREA
WORKA Parameter WORKAREA
WR Operation WRITE
Z Parameter ZCHAR
ZC Parameter ZCHAR
ZCH Parameter ZCHAR
ZCHA Parameter ZCHAR

Appendix B. Operation, Parameter and Argument Keywords Keyword Abbreviations

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 283

Glossary

Base address
The base address is the address of the base storage area and is referenced in SELCOPY control statements as position 1
(POS 1). If the base storage area is defined by a work area, its address is static. Otherwise, its address changes with
each record read from the prime input object.

Base storage area
The area of storage used as the work buffer. If no input object exists or option WORKLEN is specified, a work area is used
as the base storage area. Otherwise, the base storage area is the position and length of the last record read from the
prime input object.

Big-Endian
Big-endian describes the order of bytes that constitute a multi-byte data type so that the most significant value of the
sequence is stored at the lowest storage address in computer memory. e.g. Decimal 100 expressed as a 4-byte,
big-endian, binary constant is X'0000,0064'.

IBM z/Architecture (mainframe) hardware supports big-endian format only. Modern IBM POWER, Oracle SPARC and HP
Alpha hardware are bi-endian and so can support either big-endian and little-endian formats natively.

Control statement analysis
The first step in SELCOPY execution which involves interpretation of statement elements, selection identifier assignment
and data object open.

Little-Endian
Little-endian describes the order of bytes that constitute a multi-byte data type so that the least significant value of the
sequence is stored at the lowest storage address in computer memory. e.g. Decimal 100 expressed as a 4-byte,
little-endian, binary constant is X'6400,0000'.

Intel x86 and x86-64 architectures support little-endian format only.

Prime input
The input data object identified by the first READ operation encountered during control statement analysis. By default,
end-of-job processing will only start when end-of-file (input data) occurs for the prime input data object. Also, the file name
assigned to the prime input is default on operations where a required file name is omitted. e.g. IF EOF

Record
A generic term used to identify a length of data read from or written to a data object. e.g. If the data object is a database
table (accessed via ODBC), then a record is a formatted table row.

Selection time processing
The second step in SELCOPY execution which involves execution of executable statements in a logical sequence. When
the last executable statement in the sequence has been executed and if no input object exists, then end of job processing
starts. However, if an input object exists, control is passed back to the first executable statement. This looping back to the
first executable statement will occur until the end-of-file condition is encountered for the prime input object.

Work area
An allocated area of storage used as the base storage area with a static base address. By default, input data records are
copied from the object's input buffer to position 1 of the work area. Similarly, output records are copied from position 1 of
the work area to the output buffer.

2021/11/01 16:52:05 SELCOPY C++ (SLC) Language Reference and User Guide 284

	Contents
	Documentation Notes
	Introduction
	About this Book
	SELCOPY Overview
	SELCOPY Background
	SELCOPY Development
	The SELCOPY Language
	Run-time Environment
	SELCOPY Applications
	Maintenance

	Notation Conventions
	Summary of Changes
	Release 3.20 Enhancements
	Release 3.30 Enhancements
	Release 3.40 Enhancements
	Release 3.50 Enhancements

	Chapter 1. Program Elements
	Character Set
	Alphabetic Characters
	Numerical Characters
	Decimal Digits
	Hexadecimal Digits

	Special Characters
	Composite Symbols
	Case Sensitivity

	Statement Elements
	Delimiters
	Identifiers
	SELCOPY Keywords
	Programmer Defined Names

	Constants
	Operators
	Comments
	Comment Text in the Summary Block
	Comment Text Ignoring Statement Separator

	Statements
	Control Statement File
	End of Program Statements

	Statement Length
	Statement Continuation
	Statement Separation

	Chapter 2. Program Execution
	Invoking the Executable
	Exploiting SELCOPY
	Locating SELCOPY
	SELCOPY Command
	Sample Execution
	z/OS JCL
	z/OS TSO/E
	SELCOPYi
	UNIX/Linux Shell
	Microsoft Windows Shell

	Program Environment
	CBLNAME
	CBLNAME SLC Options

	SELCNAM (SELCOPY.NAM)
	SELCNAM SLC Options

	SELCMSG (SELCOPY.MSG)

	Program Processing
	Establish Environment
	Control Statement Analysis
	Selection Identifiers
	Variable Substitution
	File Open
	Prime Input
	Control Statement Errors

	Selection Time Processing
	Implied Loop
	Selection Time Errors

	End of Job Processing

	SELCOPY List Output
	SLCLST Environment Variable
	Header Lines
	Control Statements
	Print Block
	PRINT Block - TYPE=D Output

	Summary (Totals) Block
	Summary Block Selection Statistics Columns
	Summary Block I/O Operation Columns

	Warning Messages
	Footer Lines

	Chapter 3. Data Elements and References
	Substitution Variables
	Environment Variables
	Parameter Variables
	Equated Symbols

	Work Area or Input Buffer
	Work Area
	Input Buffer

	Constants
	Character Constants
	Unquoted Literals
	Quoted Character Constants
	Hex Character Constants
	ASCII/EBCDIC Character Constants
	Numeric Character Constants
	Date Character Constants

	Numeric Constants
	Decimal Integer Constants
	Zoned Decimal Integer Constants
	Hex Binary Integer Constants
	Decimal Fixed Point Constants
	Zoned Decimal Fixed Point Constants

	Variables
	Declared Variables
	Storage Remap
	Initial Value
	&varname Source Field Position

	Internal Variables
	@Variables

	Field Definitions
	Internal Field Definitions
	ARG
	CBLNAME
	DATE
	DSN
	FHDR
	FNAME
	FSIZE
	HEAD
	PARM
	RBA
	SCALE
	UXADIFF
	UXATPTR
	UXDW
	UXINCNT
	UXLINE
	UXLINEREM
	UXLRECL
	UXPD
	UXPGNO
	UXPW
	UXREASCD
	UXREPLYL
	UXRETCD
	UXRETSYS
	VOLID

	Data Types
	Character Data Types
	Character Fixed Length
	Character Variable Length
	Character Varying Length
	Character Variable Null Terminated

	Date Data Types
	Character Date
	Binary Date
	Unsigned Decimal Date
	Signed Decimal Date

	Numeric Data Types
	Binary Integer
	Decimal Integer
	Zoned Decimal Integer
	Decimal Fixed Point
	Zoned Decimal Fixed Point
	Hex Floating Point
	Binary Floating Point

	Numeric Character Data
	Numeric Character with FORMAT
	Numeric Character without FORMAT

	FORMAT Strings
	Numeric FORMAT Symbols
	Digit Control Symbol
	Decimal Point Control Symbol
	Zero Suppression Control Symbol
	Floating Sign Control Symbols
	Constants

	Printable Hex FORMAT Symbols
	Hex Digit Control Symbol
	Constants

	DATE FORMAT Symbols
	Date Control Sequences
	Constants

	Expressions
	Arithmetic Expressions
	Regular Expressions
	Regular Expressions Pattern String

	Value Assignment
	Input/Output Data Objects
	Files
	File Id
	Fileid Clause
	File Name

	STDIN and STDOUT
	Database Tables
	SELCOPYi Lists
	VSAM Files
	Windows Keyboard
	Windows Clipboard

	Data Record Format
	Fixed Length Record Format
	Variable Length Record Format
	Undefined Record Format

	Chapter 4. SELCOPY Operations
	Operation Classification
	Parameter Specification
	Common Parameters
	NOPCTL, NOPRINT, NOPSUM
	STOPAFT
	TIMES

	ADD
	CALL
	CENTRE
	CHANGE
	CHOP
	CLOSE
	COMPRESS
	CP
	CVDATE
	CVXX
	CVxB/CVBx - Convert to and from Binary Integer
	CVxC/CVCx - Convert to and from Character
	CVxF/CVFx - Convert to and from Floating Point
	CVCH/CVHC - Convert to and from Printable Hex
	CVxP/CVPx - Convert to and from Packed Decimal Integer
	CVxZ/CVZx - Convert to and from Zoned Decimal Integer

	DECLARE
	DELETE
	DIVIDE
	DO
	DUMMY
	END
	EQU
	EXPAND
	FLAG
	FLUSH
	GENERATE
	GOTO
	IF/AND/OR
	Standard Compare Condition
	Character Range Test Condition
	Pattern Condition
	Pointer Condition
	Numeric Condition
	List Output Condition
	Input Object Condition

	INCLUDE
	INSERT
	LEFT
	LOG
	LOWER
	MOD
	MOVE
	MULTIPLY
	ODBC
	OPEN
	OPTION
	PLOG
	PRINT
	READ
	ODBC Table Read
	Header Records
	Column Declared Variables

	SELCOPYi List Read
	Direct Read
	Directory Record Read
	z/OS PDS/PDSE Library Directory Records
	z/VM CMS File Directory Records
	Windows and Unix-like File Directory Records

	RETURN
	RIGHT
	SLEEP
	SPACE
	STACK
	START
	SUB
	SUSP
	SYSTEM
	TRAN
	UPDATE
	UPPER
	UTIME
	WRITE
	VSAM Write
	KSDS Write
	RRDS Write
	ESDS Write

	ODBC Table Write
	Window Keystroke Write
	Keystroke Syntax
	Keystroke Parameters
	Non-US and Non-UK National Keyboards
	Keystroke Example

	XV

	Appendix A. Regular Expression Summary
	Operators and Text Specifiers
	Predefined Expressions

	Appendix B. Operation, Parameter and Argument Keywords
	Operation to Parameter Keyword Cross-Reference
	Parameter to Operation Keyword Cross-Reference
	Parameter to Argument Keyword Cross-Reference
	Argument to Parameter Keyword Cross-Reference
	Keyword Abbreviations

	Glossary

